FINAL

Baseline Monitoring Document and As-Built Baseline Report UT to Mill Swamp Restoration Project

Onslow County, North Carolina

EEP Project ID No. 95019 White Oak River Basin: 03030001-010020

Prepared for:

NC Department of Environment and Natural Resources Ecosystem Enhancement Program (EEP) 1652 Mail Service Center Raleigh, North Carolina 27699-1652

Data Collection Period – August 2013 Submission Date – September 2013

This document was printed using 100% recycled paper.

FINAL

Baseline Monitoring Document and As-Built Baseline Report UT to Mill Swamp Restoration Project

Onslow County, North Carolina

EEP Project ID No. 95019 White Oak River Basin: 03030001-010020

Prepared for:

NC Department of Environment and Natural Resources Ecosystem Enhancement Program (EEP) 1652 Mail Service Center Raleigh, NC 27699-1652

Prepared by:

Michael Baker Engineering, Inc. 8000 Regency Parkway Suite 600 Cary, North Carolina 27518 Phone: 919.463.5488 Fax: 919.463.5490

Data Collection Period – August 2013 Submission Date – September 2013

TABLE OF CONTENTS

1.0)	EXE	CUTIVE SUMMARY	1
2.0)	PRO	JECT GOALS, BACKGROUND, AND ATTRIBUTES	3
	2.1	Р	roject Location and Description	3
	2.2	S	ite Directions	3
	2.3	Р	roject Goals and Objectives	3
3.0)	PRO	JECT STRUCTURE, RESTORATION TYPE, AND APPROACH	5
	3.1	Р	roject Components	5
	3.2	R	estoration Approach	5
		3.2.1	UT1a Enhancement	5
		3.2.2	UT1b Restoration	5
		3.2.3	UT1c Restoration	6
		3.2.4	Wetland Restoration	6
	3.3	P	roject History, Contacts, and Attribute Data	6
		3.3.1	Construction Summary	6
4.0)	PER	FORMANCE STANDARDS	9
5.0)	MON	NITORING PLAN AND SUCCESS CRITERIA	10
	5.1	S	tream Monitoring – Reach UT1a and UT1b	10
		5.1.1	Groundwater Monitoring and Flooding Functions	10
		5.1.2	Photo Reference Stations	10
	5.2	S	tream Monitoring – Reach UT1c	11
		5.2.1	Bank Events and Flooding Functions	11
		5.2.2	Cross-sections	11
		5.2.3	Pattern	12
		5.2.4	Bank Stability Assessments	12
		5.2.5	Longitudinal Profile	12
		5.2.6	Bed Material Analyses	12
		5.2.7	Photo Reference Stations	12
	5.3	W	Vetland Monitoring	13
		5.3.1	Groundwater Data Collection	13
		5.3.2	Hydrology	13
		5.3.3	Photo Reference Stations	14
	5.4	V	egetation Monitoring	14
6.0)	AS-E	BUILT DATA DOCUMENTATION	16
	6.1	S	tream Data	16
	6.2	Н	lydrology Data	16
	6.3	V	egetation Data	16
	6.4	А	reas of Concern	17

TABLE OF CONTENTS

7.0	MAINTENANCE AND CONTINGENCY PLANS	
7.1	Streams	
7.2	Wetland	
7.3	Vegetation	
7.4	Site Boundary	
7.5	Culverted Farm Road Crossing	
8.0	REFERENCES	

LIST OF TABLES

Table	1	Project Components and Mitigation Credits
Table	2	Project Activity and Reporting History
Table	3	Project Contacts
Table	4	Project Attributes
Table	5	Baseline Stream Summary
Table	6	Morphology and Hydraulic Monitoring Summary
Table	7	Vegetation Species Planted Across the Restoration Site
Table	8	Stem Count for Each Species Arranged by Plot

LIST OF FIGURES

Figure	1	Vicinity Map
Figure	2	Restoration Summary Map
Figure	3	Reference Sites Location Map

LIST OF APPENDICES

Appendix	Α	Figures 1 - 3, Tables 1 - 4
Appendix	В	Morphological Summary Data (Tables 5 and 6), Cross-section Plots, Profile Plots
Appendix	С	Vegetation Data (Tables 7 and 8), Vegetation Plot Photo Log, Raw Vegetation Data
Appendix	D	As-Built Plan Sheets/Record Drawings
Appendix	Ε	Photo-ID Log

1.0 EXECUTIVE SUMMARY

Michael Baker Engineering, Inc. (Baker) restored 3,606 linear feet (LF) of perennial stream, 4.0 acres (AC) of riparian wetlands, and enhanced 600 LF of stream along an unnamed tributary (UT) to Mill Swamp in Onslow County, North Carolina (NC) (Figure 1). The UT to Mill Swamp Restoration Project site (project) is located in Onslow County, approximately three miles northwest of the Town of Richlands. The project site is located in the NC Division of Water Quality (NCDWQ) subbasin 03-05-02 and the Targeted Local Watershed (TLW) 03030001-010020 of the White Oak River Basin. The project involved the restoration and enhancement of a Coastal Plain Headwater Small Stream Swamp system (NC WAM 2010, Schafale and Weakley 1990) from impairments within the project area due to past agricultural conversion, cattle grazing, and draining floodplain wetlands by ditching activities.

The project goals directly addressed stressors identified in the White Oak River Basin Restoration Priority Plan (RBRP) such as degraded riparian conditions, channel modification, and excess sediment and nutrient inputs. The primary restoration goals, as outlined in the approved mitigation plan, are described below:

- Create geomorphically stable conditions along the unnamed tributaries across the site,
- Implement agricultural Best Management Practices (BMPs) to reduce nonpoint source inputs to receiving waters,
- Protect and improve water quality by reducing bank erosion, nutrient, and sediment inputs,
- Restore stream and wetland hydrology by connecting historic flow paths and promoting natural flood processes, and
- Restore and protect riparian buffer functions and corridor habitat in perpetuity by establishing a permanent conservation easement.

To accomplish these goals, the following objectives were identified:

- Restore existing incised, eroding, and channelized streams by providing access to their historic floodplains,
- Prevent cattle from accessing the riparian buffer, reducing excessive bank erosion,
- Increase aquatic habitat value by providing more bedform diversity, creating natural scour pools and reducing sediment from accelerated bank erosion,
- Plant native species riparian buffer vegetation along stream bank and floodplain areas, protected by a permanent conservation easement, to increase stormwater runoff filtering capacity, improve bank stability, and shade the stream to decrease water temperature,
- Improve aquatic and terrestrial habitat through improved substrate and in-stream cover, addition of woody debris, and reduction of water temperature, and
- Control invasive species vegetation within the project area and if necessary continue treatments during the monitoring period.

The project as-built condition closely mimics that proposed by the design. Differences are outlined below:

• The Stream and Wetland Mitigation Plan (Mitigation Plan) specified the planting of riparian live stakes during construction; however, due to the time of planting in May 2013 none were installed. During construction, it was determined that live stakes shall be installed during the dormant season.

Any implementation of live stakes, post construction, will be documented in the Post-construction Monitoring Report of the same year.

- Fencing along Reach UT3 was originally proposed along both banks of the reach outside of the conservation easement; however, the landowner decided to use the northern pasture for hay production only, so fencing was installed only on the southern side of the reach to exclude cattle.
- Sweetbay (*Magnolia virginiana*) was substituted for American Holly (*Ilex opaca*) in the understory plantings for the headwater riparian areas.
- Fifty percent of the proposed quantities of Water Oak (*Quercus nigra*) were substituted with Cherrybark Oak (*Quercus pagoda*) for the riparian wetland planting areas.

This report documents the completion of the restoration construction activities and presents as-built monitoring data for the post-construction monitoring period. Table 1 summarizes site conditions before and after restoration, as well as the conditions predicted in the previously approved project Mitigation Plan. Table 1 is located in Appendix A.

2.0 PROJECT GOALS, BACKGROUND AND ATTRIBUTES

2.1 **Project Location and Description**

The UT to Mill Swamp Restoration Project site (project) is located in Onslow County, NC, approximately three miles northwest of the Town of Richlands, as shown on the Vicinity Map (Figure 1). The project is located in the NC Division of Water Quality (NCDWQ) subbasin 03-05-02 of the White Oak River Basin and hydrologic unit 03030001-010020. The project includes two unnamed headwater tributaries (UTs) to Mill Swamp and areas of previously disturbed wetlands and is located in the Mid-Atlantic Coastal Plain physiographic region.

UT to Mill Swamp (UT1) is a small, perennial headwater stream with a total drainage area of approximately 0.66 square miles. Historically, the area has been extensively drained for silvicultural and agricultural production and cattle grazing. The UTs were ditched to promote drainage from the adjacent farm fields and forested areas, which resulted in channel incision and a disconnection from their relic floodplain. These conditions generally lead to vertical and lateral instability over time and were observed throughout the project area. The riparian vegetation throughout the project is a mix of forested areas and herbaceous grasses that are regularly maintained by mowing and crop production. The upstream portion of the project is mostly wooded with a mature bottomland hardwood swamp forest that has evidence of past channel disturbance.

Based on field evaluations of intermittent/perennial status and use of NCDWQ stream assessment protocols, UT1 is classified as a perennial stream system, while UT3 is considered an intermittent stream reach. Historically, it is likely that the area functioned as a headwater stream and wetland system, with diffuse flow and no clearly defined channel towards the upper reaches. A more defined channel likely existed towards the bottom of the project watershed, due to the increased drainage area and steeper valley slopes.

2.2 Site Directions

To access the site from Raleigh, follow Interstate 40 southeast and take the NC Highway 24 Exit East/ NC Highway 903 North, Exit 373 toward Kenansville and Magnolia. From Exit 373, continue on the Kenansville Bypass for 6 miles before turning right onto NC Highway 24 East. After turning right onto NC Highway 24 (Beulaville Highway), continue for 23 miles before turning left onto US Highway 258 (Kinston Highway). Once on US Highway 258, travel for approximately 1.2 miles before turning right onto Warren Taylor Road. Then proceed 0.5 miles and turn left while heading north through a large field. The site is located where the farm road intersects UT to Mill Swamp at a downstream culvert crossing.

2.3 **Project Goals and Objectives**

The UT to Mill Swamp Restoration Project was identified as an opportunity to improve water quality and ecological functions within a NC Ecosystem Enhancement Program (NCEEP) Target Local Watershed (TLW). The primary restoration goals of the project are described below:

- Create geomorphically stable conditions along the unnamed tributaries across the site,
- Implement agricultural BMPs to reduce nonpoint source inputs to receiving waters,
- Protect and improve water quality by reducing bank erosion, nutrient and sediment inputs,
- Restore stream and wetland hydrology by connecting historic flow paths and promoting natural flood processes, and
- Restore and protect riparian buffer functions and corridor habitat in perpetuity by establishing a permanent conservation easement.

To accomplish these goals, the following objectives have been identified:

- Restore existing incised, eroding, and channelized streams by providing access to their historic floodplains,
- Prevent cattle from accessing the riparian buffer, reducing excessive bank erosion,
- Increase aquatic habitat value by providing more bedform diversity, creating natural scour pools and reducing sediment from accelerated bank erosion,
- Plant native species riparian buffer vegetation along stream bank and floodplain areas, protected by a permanent conservation easement, to increase stormwater runoff filtering capacity, improve bank stability, and shade the stream to decrease water temperature,
- Improve aquatic and terrestrial habitat through improved substrate and in-stream cover, addition of woody debris, and reduction of water temperature, and
- Control invasive species vegetation within the project area and if necessary continue treatments during the monitoring period.

The project goals directly addressed stressors identified in the White Oak River Basin Restoration Priority Plan (RBRP), such as degraded riparian conditions, channel modification, and excess sediment and nutrient inputs. The proposed natural channel design approach will result in a stable riparian headwater stream and wetland system that will reduce sediment and nutrient loading to the Mill Swamp sub-watershed, while improving water quality conditions that support terrestrial and aquatic species within the White Oak River Basin.

3.0 PROJECT STRUCTURE, RESTORATION TYPE, AND APPROACH

3.1 Project Components

The project area consists of the restoration, and enhancement of two unnamed headwater tributaries (UTs) to Mill Swamp, UT1 and UT3, and areas of previously disturbed riparian headwater wetlands. For design purposes, UT1 was divided into three reaches: UT1a, UT1b, and UT1c. Restoration practices involved raising the existing streambed and reconnecting the stream to the historic floodplain and restoring diffuse flows to abandoned wetland floodplains and hydric soils areas previously drained by ditching activities. The existing ditches within the project area were partially to completely filled to decrease surface and subsurface drainage and raise the local water table. Native species riparian buffer vegetation was established and/or protected at least 50 feet from the top of bank along all project reaches. Lastly, cattle were excluded along the southern portion of UT3 (Station 10+00 to 16+43) through permanent fencing outside of the conservation easement.

3.2 Restoration Approach

Based on the post-construction as-built survey, the project consisted of 3,606 LF of restoration on Reaches UT1b and UT1c, and 600 LF of Enhancement Level I on UT1a. In addition, the project restored a total of 4.0 acres of riparian wetlands. A conservation easement consisting of 19.6 acres will protect and preserve all stream reaches, wetland areas, and riparian buffers in perpetuity.

The revegetation plan for the overall riparian buffer system will consider the combination of existing on-site native species vegetation and riparian communities identified by Schafale and Weakley (1990) that include "Coastal Plain Small Stream Swamp" and "Coastal Plain Bottomland Hardwood". The planting areas were designated by zones on the as-built plan sheets to represent site conditions (Appendix D).

The restoration approach for the project allows stream flows larger than bankfull flows to spread onto the floodplain, dissipating flow energies and reducing stress on streambanks. In-stream structures were used to control streambed grade, reduce streambank stress, and promote bedform sequences and habitat diversity. The in-stream structures consist of root wads, log vanes, log weirs, cover logs, grade control log-jams, and ditch plugs/channel blocks.

Streambanks were stabilized using a combination of erosion control matting, temporary and permanent seeding, and bare-root planting. The sites were planted with native species vegetation as shown in Table 7 (Appendix C) and are protected through a permanent conservation easement. Table 1 and Figure 2 (Appendix A) provide a summary of the project components.

3.2.1 UT1a Enhancement

UT1a began at the upstream project limits and flows southeasterly for approximately 600 feet. The existing unstable channel section was partially to completely filled on a slight downward gradient slope along its length. The approach prevents any potential backwater conditions past the upstream channel limits and will eventually allow the stream to be discharged back onto the historic floodplain. Because of the relatively steep nature of the upper headwater valley (0.008 ft/ft), and the presence of headcuts along the reach, the stream was slightly entrenched and functions as a transitional reach between single and multi-thread channel before reconnecting with its historic floodplain.

3.2.2 UT1b Restoration

At approximately Station 16+00, the UT1b restoration approach considered the USACE and NCDWQ guidance document entitled "*Information Regarding Stream Restoration in the Outer Coastal Plain of North Carolina.*" Based on average valley slope (0.0055 ft/ft)

and upper catchment drainage area (~80 ac) the channel most likely functioned prior to disturbance as a headwater stream system (Rosgen 'DA' stream type). Therefore, rather than the construction of a defined single thread channel, restoration focused on filling in the drainage ditches and main channel, and restoring the pre-disturbed topography of the valley. The valley bottom was graded to restore the natural microtopographic variability that is common within multi-thread headwater systems. Shallow flow paths were connected to allow initial flow of water toward Reach UT1c. The system will be allowed to form multi-thread channels and diffuse flow patterns on its own over time.

The restoration of UT1b ends near the farm culvert crossing at approximately Station 37+00. At this location, the UT1b channel connects with the proposed single thread channel, which forms the beginning to UT1c, by grading the shallow flow paths, which gradually merge into a broad swale that will connect to the constructed design bankfull width and depth.

3.2.3 UT1c Restoration

A stable cross-section will be achieved by restoring a single thread meandering channel across the abandoned floodplain, increasing the width/depth ratio, and raising the streambed (Rosgen Priority Level I) to restore a channel that is appropriately sized for its increased drainage area. Grading activities were aimed at restoring historic flow patterns and adjacent wetland hydrology by removing past channel spoil and other agricultural land manipulations. The channel was restored to a Rosgen 'C' stream type, and the sinuosity was increased by adding meanders to lengthen the channel and restore bedform diversity. Minimal grade control was required for the project, due to the low channel slope and low potential for channel incision.

3.2.4 Wetland Restoration

The restoration design for the wetland was based on a targeted "Coastal Plain small stream swamp" riparian wetland type, as identified by Schafale and Weakley (1990). Hydrology of this system is palustrine, "intermittently, temporarily, or seasonally flooded", as the restored channel is designed to carry the bankfull flow, and to flood (flow out of its banks) at discharges greater than bankfull.

3.3 Project History, Contacts, and Attribute Data

Baker implemented the project under a full delivery contract with NCEEP to provide stream and wetland mitigation credits in the White Oak River Basin. The chronology of the project is presented in Table 2. The contact information for all designers, contractors, and relevant suppliers is presented in Table 3. Relevant Project background information is presented in Table 4. Tables 2, 3, and 4 are located in Appendix A of this report. As-built stationing is outlined in the Construction Summary, below, and in Table 1 in Appendix A.

3.3.1 Construction Summary

In accordance with the approved Mitigation Plan and regulatory permits, construction began with site preparation, installation of sediment and erosion control measures, and the establishment of staging areas, haul roads, and stockpile areas. Materials were stockpiled as needed for the initial stages of construction. Suitable fill material was harvested from a borrow area and disposed on-site within the existing channel bed and drainage swale fill areas. The construction contractor was River Works, Inc. (River Works) and construction was initiated in April 2013.

Construction began on the upstream portion of UT1 at Station 10+00 and proceeded along UT1a and UT1b by clearing timber and scrub for construction access to the existing area of

the UT1a channel. Harvested timber from this area was stockpiled for use as rootwads and log structures. After timber and scrub clearing were complete, backfilling of the existing channel was initiated by returning the historic spoil that was placed along the top of bank back into the UT1 channel. Upon completion of bank grading, pump-around operations were installed and utilized per the Sedimentation and Erosion Control Plan and were followed by the installation of in-stream structures. Once the existing reaches of UT1a and UT1b were backfilled and compacted, work began on grading the new channels. First, the channel for UT1a was tied into the existing channel at the wood line at Station 10+00. After tie-in was complete, the top of bank elevation was determined and the new channel construction began. The bed elevation of UT1a was constructed to tie-in with UT1b. Three log weir structures were installed along UT1a to maintain bed elevations and to dissipate flow energies. The as-built length of UT1a after construction was 600 LF and ends at Station 16+00.

The restoration of UT1b did not involve the construction of a defined single thread channel, but rather the current channelized stream was filled and graded back to natural topographic contours. During the construction of UT1b, the historic spoil piles were placed back into the existing channel and fill material was used to match the bed elevation of UT1a. The entire length UT1b was designed as a multi-thread system; therefore, the construction of a single channel bed was not utilized. Instead, a wider floodplain was graded as to let higher flow energies dissipate across the land surface. In the downstream extent near Station 37+23, an existing culverted crossing was upgraded to carry design flows greater than bankfull. The as-built length of UT1b after construction is 2,093 LF.

Work along UT1c also began with placing the historic spoil back into the existing channel at Stations 37+23 and 52+38. After backfilling was complete, the surrounding land was graded to restore historic flow patterns and adjacent wetland hydrology. Once the UT1c floodplain had been graded, a new single-thread channel was excavated through the low part of the valley. The new channel was restored to a Rosgen "C" stream type and the sinuosity was increased by adding meanders to lengthen the channel and restore bedform diversity. Minimal grade control was installed due to low channel slope and low potential for channel incision. In-stream wooden structures installed on UT1c were log vanes, log weirs, rootwads, cover logs and log-jams. The as-built length of UT1c after construction was 1,513 LF.

Construction on UT3 involved installing three log weirs to dissipate flow energies and provide grade control along active headcuts. The log weirs were installed from Station 18+90 through Station 19+40 to lower the bed elevation of UT3 to match that of UT1b. The eroding channel was filled and then constructed with a braided channel approach to tiein with UT1b at Station 23+69. UT3 has a constructed as-built length of 479 LF, however the reach is an intermittent stream and no mitigation credit was proposed for the work.

All riparian buffer areas within the project boundaries are a minimum of fifty feet from the top of both stream banks and are protected in perpetuity by a conservation easement that totals 19.6 acres. Fencing was not installed along the conservation easement boundary. However, fencing was installed outside of the easement on the southern side of UT3, to exclude cattle access to the stream. See the as-built plan sheets and Figure 2 for fencing location.

As-built plan sheets/record drawings depict actual surveyed areas with the project area and depict any changes from the construction drawings to what was implemented on-site during construction. The as-built plan sheets/record drawings are located in Appendix D. The as-

built results for the project, including restoration and enhancement, areas totaled 4,206 LF of stream and 4.0 AC of wetland and are outlined in Table 1.

Upon completion of stream work within the site, sedimentation and erosion control measures such as pump around operations, temporary stream crossings, rock check dams, and silt fence were removed and all disturbed areas were stabilized with temporary seed and mulch before leaving the site. In addition, the planting of bare-root trees and shrubs, as well as wetland plantings, were completed in June 2013. Baker and River Works met onsite on June 5, 2013 and conducted a punch-list of final items to be performed. River Works demobilized in June 2013 after the final walk through on June 12, 2013.

4.0 PERFORMANCE STANDARDS

Baker has been involved in obtaining recent approvals from the regulatory agencies for several Coastal Plain stream and wetland mitigation plans. The success criteria for the project site will follow the mitigation plans developed for these projects, as well as the Stream Mitigation Guidelines (SMG) (USACE 2003 and NCDWQ 2003) and NCEEP's supplemental guidance document *Monitoring Requirements and Performance Standards for Stream and/or Wetland Mitigation* dated November 7, 2011. Additionally, the USACE and NCDWQ Guidance Document *Information Regarding Stream Restoration in the Outer Coastal Plain of North Carolina* will be referenced for monitoring purposes.

Monitoring activities will be conducted for a period of 7 years, unless the site demonstrates complete success by year 5 and no concerns have been identified. An early closure provision may be requested by the provider for some or all of the monitoring components. Early closure may only be obtained through written approval from the USACE in consultation with the NC Interagency Review Team (NCIRT).

Based on the design approaches, different monitoring methods were proposed for the project reaches. For reaches UT1a and UT1b, which involved the enhancement (bed/bank stabilization) and restoration of the historic flow pattern as a multi-thread headwater stream system to be constructed as a broad or diffuse swale with shallow flow paths, monitoring will focus primarily on visual assessments and flow documentation. For reach UT1c, which involved a more traditional restoration of a single thread channel, geomorphic monitoring approaches follow those recommended by the 2003 SMG and the 2011 NCEEP supplemental guidance. Monitoring shall be consistent with the requirements described in the Federal Rule for compensatory mitigation sites in the Federal Register Title 33 Navigation and Navigable Waters Volume 3 Chapter 2 Section § 332.5 paragraphs (a) and (b), dated April 2008.

5.0 MONITORING PLAN AND SUCCESS CRITERIA

5.1 Stream Monitoring – Reach UT1a & UT1b

Geomorphic monitoring of reaches UT1a and UT1b will conducted once a year for seven years following the completion of construction to evaluate the effectiveness of the restoration practices. Since this approach involved the restoration of historic flow patterns and flooding functions in a multi-thread headwater stream system, monitoring efforts will focus on visual observations to document stability and the use of water level monitoring gauges to document saturation and flooding functions. The methods used and any related success criteria are described below for each parameter.

5.1.1 Groundwater Monitoring and Flooding Functions

The occurrence of bankfull events and flooding functions within the monitoring period will be documented by the use of automated water level gauges and photographs. Groundwater levels within the restored headwater valley should approximate the wetland hydroperiods of similar reference sites. Two (2) automated gauges were installed in a transect (4 well transects total), every 500 feet apart along the headwater stream system to demonstrate restoration of groundwater hydrology along the restored headwater valley. The automated loggers are programmed to collect data at a minimum of every 6 hours to groundwater levels. Installation of monitoring stations follow the standard methods found in the SMG document (USACE and NCDWQ 2006).

A surface water flow event will be considered perennial when the flow duration occurs for a minimum of 30 days. Two surface water flow events must be documented within a fiveyear monitoring period; otherwise, monitoring will continue for seven years or until two flow events have been documented in separate years. Two flow gauges (pressure transducers) were installed to document the occurrence of extended periods of shallow surface ponding, indicative of flow. The gauges should also document flooding connectivity between the restored UT1a and UT1b reaches for at least 30 consecutive days under normal climatic conditions. Additional monitoring or alternative analyses may be necessary in the event of abnormal climatic conditions.

5.1.2 Photo Reference Stations

Visual monitoring of all stream sections will be conducted twice per monitoring year with at least five months in between each site visit. Photographs will be used to visually document system performance. Reference stations will be photographed annually for a minimum of seven years following construction. Photographs will be taken from a height of approximately five to six feet. Permanent markers were established to ensure that the same locations (and view directions) on the site are documented in each monitoring period.

The headwater stream reaches will be photographed longitudinally beginning at the downstream end of the restoration site and moving upstream to the end of the site. Photographs will be taken looking upstream at delineated locations throughout the restored stream valley. The points will be close enough together to provide an overall view of the reach lengths and valley crenulations. The angle of the shot will depend on what angle provides the best view and will be noted and continued in future shots.

Lateral reference photos. Lateral photographs will also be used to evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation, and effectiveness of erosion control measures subjectively. The same photo station locations used for the upstream shot will be used to capture a valley photo that which will view across the valley

towards the buffer. Photo reference stations will be marked and described for future reference to document the development of appropriate vegetation.

A series of photos over time should demonstrate successional maturation of riparian vegetation. When modifications to photo position must be made due to obstructions or other reasons, the position will be noted along with any landmarks and the same position will used in the future. Additional photographs and/or video footage may be taken to document any observed evidence of flooding patterns such as debris/leaf litter, wrack lines, water marks, diffuse flow features, sediment sorting/deposits, shelving, etc.

5.2 Stream Monitoring – Reach UT1c

Geomorphic monitoring of Reach UT1c will be conducted once a year for a minimum of seven years following the completion of construction to evaluate the effectiveness of the restoration practices. Monitored stream parameters include stream dimension (cross-sections), pattern (planimetric survey), profile (longitudinal profile survey), and visual observation with photographic documentation. The methods used and related success criteria are described below for each parameter.

5.2.1 Bankfull Events and Flooding Functions

The occurrence of bankfull events within the monitoring period will be documented by the use of a crest gauge and photographs. The crest gauge was installed on the floodplain within ten feet of the restored channel. The crest gauge will record the highest watermark between site visits, and the gauge will be checked at each site visit to determine if a bankfull event has occurred. Photographs will be used to document the occurrence of debris lines and sediment deposition on the floodplain during monitoring site visits.

Two bankfull flow events must be documented within a five-year monitoring period. The two bankfull events must occur in separate years; otherwise, the monitoring will continue until two bankfull events have been documented during the seven year post construction monitoring period.

5.2.2 Cross-Sections

Per the USACE 2003 SMGs, permanent cross-sections were installed at a rate of one crosssection per twenty bankfull widths of restored stream, with approximately 50 percent of cross-sections located at riffles and 50 percent located at pools. Each cross-section is marked on both banks with permanent monuments to establish the exact transect used. A common benchmark will be used for cross-sections and consistently used to facilitate easy comparison of year-to-year data. The cross-section surveys will occur in years one, two, three, five, and seven, and must include measurements of Bank Height Ratio and Entrenchment Ratio. The monitoring survey will include points measured at all breaks in slope, including top of bank, bankfull, inner berm, edge of water, and thalweg, if the features are present. Riffle cross-sections will be classified using the Rosgen Stream Classification System.

There should be little change in as-built cross-sections. If changes do occur, they will be documented in the survey data and evaluated to determine if they represent a movement toward a more unstable condition (e.g., down-cutting or erosion) or a movement toward increased stability (e.g., settling, vegetative changes, deposition along the banks, or decrease in width/depth ratio). Cross-sections will be classified using the Rosgen Stream Classification System, and all monitored cross-sections should fall within the quantitative parameters (i.e. BHR no more than 1.2 and ER no less than 2.2) defined for channels of the design stream type. Given the small channel size, sandy substrate, and large floodplain

widths of the proposed steam, bank pins will not be installed unless required by the USACE.

5.2.3 Pattern

The plan view measurements such as sinuosity, radius of curvature, meander width ratio will be taken on newly constructed meanders for the as-built baseline conditions of the first year of monitoring only. Subsequent visual monitoring will be conducted twice a year, at least five months apart, to document any changes or excessive lateral movement in the plan view of the restored channel.

5.2.4 Bank Stability Assessments

Bank Erodibility Hazard Index (BEHI) and Near Bank Stress (NBS) assessments will be conducted along the entire length of UT1 in Year 5 of post-construction monitoring and compared with pre-construction conditions. Stabilization measures implemented during construction should significantly decrease sediment loading throughout the entire project area; therefore, resulting in lower BEHI and NBS scores and a reduction in sediment load estimates (Rosgen, 1996 and 2001).

5.2.5 Longitudinal Profile

A longitudinal profile was surveyed for the entire length of channel immediately after construction to document as-built baseline conditions for the first year of monitoring only. The survey was tied to a permanent benchmark and measurements included thalweg, water surface, bankfull, and top of low bank. Each of these measurements were taken at the head of each feature (e.g., riffle, pool) and at the maximum pool depth. The longitudinal profile should show that the bedform features installed are consistent with intended design stream type. The longitudinal profiles will not be conducted during subsequent monitoring years unless channel instability has been documented or remedial actions/repairs are required by the USACE or NCEEP.

5.2.6 Bed Material Analyses

Since the streams through the project site are dominated by sand-size particles, pebble count procedures would not show a significant change in bed material size or distribution over the monitoring period; therefore, bed material analyses will not be conducted for this project.

5.2.7 Photo Reference Stations

Visual monitoring of all stream sections will be conducted twice per monitoring year with at least five months in between each site visit. Photographs will be used to visually document system performance. Reference stations will be photographed annually for a minimum of seven years following construction. Photographs will be taken from a height of approximately five to six feet. Permanent markers will be established to ensure that the same locations (and view directions) on the site are documented in each monitoring period.

Lateral reference photos. Reference photo transects will be taken at each permanent crosssection. Photographs will be taken of both banks at each cross-section. The survey tape will be centered in the photographs of the bank. The water line will be located in the lower edge of the frame, and as much of the bank as possible will be included in each photo. Photographers should make an effort to consistently maintain the same area in each photo over time. *Structure photos.* Photographs will be taken of grade control structures along the restored stream, and will be limited to log weirs or steps. Photographers will make every effort to consistently maintain the same area in each photo over time.

5.3 Wetland Monitoring

5.3.1 Groundwater Data Collection

Groundwater monitoring wells were installed in the wetland mitigation area to document hydrologic conditions of the restored wetland area. Groundwater monitoring wells were installed to evaluate restoration of groundwater hydrology during each growing season, for seven years of hydrologic monitoring, or until success criteria have been met, whichever occurs later. At least three (3) automated gauges were installed in a transect, every 500 feet within the restored wetland area to demonstrate groundwater hydrology perpendicular to the flow of the valley, as well as to document flow duration. To meet the hydrologic success criteria, the monitoring gauge data must show that for each normal year within the monitoring period, the site has been inundated or saturated for a certain hydroperiod. The targeted hydroperiod will be based on the range of wetness conditions for the type of wetland system to be restored and comparable hydrology of a nearby reference wetland site.

5.3.2 Hydrology

In order to determine if the hydrologic success criteria are achieved, automated groundwater-monitoring stations were installed across the restored site and monitored yearround. Groundwater monitoring stations will follow the USACE standard methods found in the WRP Technical Notes ERDC TN-WRAP-00-02, (July 2000). In the event that there are years of normal precipitation during the monitoring period, and the data for those years do not show that the site has been inundated or saturated for the appropriate hydroperiod during the normal precipitation year, the review agencies may require remedial action. Baker will provide any required remedial action and continue to monitor hydrology on the site until it displays that the site has been inundated or saturated for the appropriate hydroperiod.

The objective is for the monitoring data to show the site exhibits an increased frequency of flooding. Groundwater levels will be compared to pre-restoration conditions and reference conditions. The success criteria for riparian wetland hydrology will be met when the site is saturated within 12 inches of the soil surface for 12 percent of the growing season (~243 days) or twenty-nine (29) or more consecutive days during the growing season, during a period when antecedent precipitation has been normal or drier than normal for a minimum frequency of 5 years in 10 (USACE, 2010 and 2005).

In order to determine if the rainfall is normal for the given year, a rainfall gauge was installed on the site to compare precipitation amounts using tallied data obtained from the Onslow County WETS Station and from the automated weather station at Albert Ellis Airport (KOAJ-AWOS), approximately twelve miles south of the site. Data from the Jacksonsville station can be obtained from the CRONOS Database located on the State Climate Office of North Carolina's website. If a normal year of precipitation does not occur during the first seven years of monitoring, Baker will continue to monitor hydrology on the site until it documents that the site has been inundated or saturated for the appropriate hydroperiod.

If the rainfall data for any given year during the monitoring period are abnormal, it is possible that the desired hydrology for the site may not meet specific success criteria.

However, reference wetland data will be assessed to determine if there is a positive correlation between the underperformance of the project site and the natural hydrology of the reference site(s).

5.3.3 Photo Reference Stations

Visual monitoring of all stream sections will be conducted twice per monitoring year with at least five months in between each site visit. Photographs will be used to visually document system performance and identify areas of low stem density, invasive species vegetation, beaver activity, or other areas of concern. Reference stations will be photographed twice a year for a minimum of seven years following construction. Photographs will be taken from a height of approximately five to six feet. Permanent markers were established to ensure that the same locations (and view directions) on the site are documented in each monitoring period.

5.4 Vegetation Monitoring

Successful restoration of the vegetation on a site is dependent upon hydrologic restoration, planting of preferred canopy species, and volunteer regeneration of the native plant community. In order to determine if the criteria are achieved, vegetation-monitoring quadrants were installed and will be monitored across the restoration site in accordance with the CVS-NCEEP Protocol for Recording Vegetation, Version 4.1 (2007). The vegetation monitoring plots are a minimum of 2 percent of the planted portion of the site with six (6) plots established randomly within the planted riparian buffer areas per Monitoring Levels 1 and 2. No monitoring quadrants were established within the undisturbed wooded areas of reach UT1a and UT1b. The size of individual quadrants are 100 square meters for woody tree species.

Vegetation monitoring will occur in the fall, prior to the loss of leaves. Individual quadrant data will be provided and will include species diameter, height, density, and coverage quantities. Relative values will be calculated, and importance values will be determined. Individual seedlings were marked such that they can be found in succeeding monitoring years. Mortality will be determined from the difference between the previous year's living, planted seedlings and the current year's living, planted seedlings.

At the end of the first full growing season (baseline/year 0) or after 180 days between March 1st and November 30th, species composition, stem density, and survival will be evaluated. For each subsequent year, vegetation plots shall be monitored for seven years in years 1, 2, 3, 5 and 7 or until the final success criteria are achieved. The restored site will be evaluated between March and November. The interim measure of vegetative success for the site will require the survival of at least 320, 3-year old, planted trees per acre at the end of year three of the monitoring period. At year five, density must be no less than 260, 5-year old, planted trees per acre at the end of the seven year monitoring period, which must average 10 feet in height. However, if the performance standard is met by year 5 and stem densities are greater than 260, 5-year old stems/acre, vegetation monitoring may be terminated with approval by the USACE and the IRT.

While measuring species density and height is the current accepted methodology for evaluating vegetation success on mitigation projects, species density and height alone may be inadequate for assessing plant community health. For this reason, the vegetation monitoring plan will incorporate the evaluation of additional plant community indices, native volunteer species, and the presence of invasive species vegetation to assess overall vegetative success.

Baker will provide required remedial action on a case-by-case basis, such as: replanting more wet/drought tolerant species vegetation, conducting beaver management/dam removal, and removing undesirable/invasive species vegetation, and will continue to monitor vegetation performance until the corrective actions demonstrate that the site is trending towards or meeting the standard requirement. Existing mature woody vegetation will be visually monitored during annual site visits to document any mortality, due to construction activities or changes to the water table, that negatively impact existing forest cover or favorable buffer

vegetation. Additionally, herbaceous vegetation, primarily native grasses, will be seeded/planted throughout the site as necessary. During and immediately following construction activities, all ground cover at the project site must be in compliance with the NC Erosion and Sedimentation Control Ordinance.

6.0 AS-BUILT DATA DOCUMENTATION

Stream, wetland, and vegetation components will be monitored for seven years post-construction to evaluate project success, unless the site demonstrates complete success by Year 5 and no areas of concern have been identified. The specific locations of vegetation plots, permanent cross-sections, crest gauges, and wetland gauges are shown on the as-built plan sheets. Photo reference stations were installed along UT1 and UT3. Their physical locations and photo direction are also depicted on the as-built plan sheets D.

6.1 Stream Data

For monitoring stream success criteria, eight (8) permanent cross-sections and one (1) crest gauge were installed on UT1c, while eighteen (18) photo reference stations were installed throughout the project area. The permanent cross-sections will be used to monitor channel dimension and bank stability over time. The crest gauge will be used to document the occurrence of bankfull events. In addition, a longitudinal survey was completed for the restored stream channels to provide a base-line for evaluating changes in bed conditions over time. The as-built permanent cross-sections (with photos) and as-built longitudinal data as well as the quantitative pre-construction, reference reach, and design data used to determine restoration approach are provided in Appendix B. As-built data will be used for comparison to post-construction monitoring data. The locations of the permanent cross-sections and the crest gauge are shown on the as-built plan sheets in Appendix D. Photographs are provided in Appendix E.

6.2 Hydrology Data

A total of eighteen (18) groundwater monitoring gauges were installed throughout the project site, eight (8) along UT1a and UT1b and ten (10) along UT1c. Groundwater gauges will document water table hydrology throughout the seven-year monitoring period and will be compared to pre-restoration and reference conditions. Locations of the groundwater gauges are depicted in the as-built plan sheets in Appendix D.

Additionally, two (2) flow gauges (pressure transducers) were installed along UT1b. These devices were installed to document the occurrence of extended periods of shallow surface ponding, indicative of flow. Locations of the groundwater gauges are depicted in the as-built plan sheets in Appendix D

6.3 Vegetation Data

Bare-root trees and shrubs were planted within restoration and enhancement areas of the conservation easement. A minimum 50-foot buffer was established and/or protected along all stream reaches. Planting of bare-root trees and shrubs, as well as wetland plantings, were completed in June 2013. Additionally, Sweetbay (*Magnolia virginiana*) was substituted for American Holly (*Ilex opaca*) in the understory plantings of the headwater riparian areas. Fifty percent of the proposed quantities of Water Oak (*Quercus nigra*) were substituted with Cherrybark oak (*Quercus pagoda*) in the riparian wetland planting areas.

The approved Mitigation Plan specified the planting of riparian live stakes during construction; however, due to the time of planting in May and June 2013, none were installed. During construction, it was determined that live stakes shall be installed during the Fall 2013 dormant season. Species planted are summarized in Tables 7 and 8 in Appendix C.

The Mitigation Plan for the site specifies that the number of quadrants required shall be based on the CVS-NCEEP monitoring guidance (2007). The total number of quadrants was calculated using the CVS-NCEEP Entry Tool Database version 2.2.7 (CVS-NCEEP, 2007). The sizes of individual quadrants are 100 square meters. A total of six (6) vegetation plots were installed throughout the project site. The initial planted density within each of the vegetation monitoring plots is provided in Table 9. The average density of planted bare root stems, based on the data from the six vegetation monitoring plots, is 693 stems per acre. The locations of the vegetation plots are shown on the as-built plan sheets in Appendix D.

PAGE 16

6.4 Areas of Concern

No areas of concern were noted during the Baseline Monitoring field survey and data collection.

7.0 MAINTENANCE AND CONTINGENCY PLANS

Maintenance requirements vary from site to site and are generally driven by the following conditions:

- Projects without established, woody floodplain vegetation are more susceptible to erosion from floods than those with a mature, hardwood forest.
- Projects with sandy, non-cohesive soils are more prone to bank erosion than cohesive soils or soils with high gravel and cobble content.
- Alluvial valley channels with access to their floodplain are less vulnerable to erosion than channels that have been disconnected from their floodplain.
- Wet weather during construction can make accurate channel and floodplain excavations difficult.
- Extreme and/or frequent flooding can cause floodplain and channel erosion.
- Extreme hot, cold, wet, or dry weather during and after construction can limit vegetation growth, particularly temporary and permanent seed.
- The presence and aggressiveness of invasive vegetation species can affect the extent to which a native species vegetation buffer can be established.
- The presence of beaver can affect vegetation survivability and stream function.

The site will be monitored on a regular basis and as well as a physical inspection of the site at least once a year throughout the post-construction monitoring period until performance standards are met. These site inspections may identify site components and features that require routine maintenance. Maintenance issues and recommended remediation measures will be detailed and documented in the post-construction monitoring reports. Factors that may have caused any maintenance needs, including any of the conditions listed above, shall be discussed. Routine maintenance will be most likely in the first two years following site construction and may include the following components as described below.

7.1 Streams

Routine channel maintenance and repair activities may include modifying in-stream structures to prevent piping, securing loose coir matting, and supplemental installations of live stakes and other target vegetation along the project reaches. Areas of concentrated stormwater and floodplain flows that intercept the channel may also require maintenance to prevent bank failures and head-cutting until vegetation becomes established.

7.2 Wetland

Routine wetland maintenance and repair activities may include securing of loose coir fiber matting and supplemental installations of target vegetation within the wetland. Areas of concentrated stormwater and floodplain flows that intercept the wetland may also require maintenance to prevent scour.

7.3 Vegetation

Vegetation will be maintained to ensure the health and vigor of the targeted plant community. Routine vegetation maintenance and repair activities may include supplemental planting, pruning, and fertilizing. Exotic invasive plant species will controlled by mechanical and/or chemical methods. Any invasive plant species control requiring herbicide application will be performed in accordance with NC Department of Agriculture and Consumer Services (NCDA&CS) rules and regulations.

7.4 Site Boundary

Site boundaries have been demarcated in the field to ensure clear distinction between the mitigation site and adjacent properties. Boundaries can be identified by fence, marker, bollard, post, or other means as allowed by site conditions and/or conservation easement. Boundary markers disturbed, damaged, or destroyed will be repaired and/or replaced on an as needed basis.

7.5 Culverted Farm Road Crossing

The permanent road crossing within the site may be maintained only as allowed by the recorded Conservation Easement, deed restrictions, rights of way, or corridor agreements.

8.0 **REFERENCES**

- Federal Register Title 33 Navigation and Navigable Waters Volume 3 Chapter 2 Section § 332.5 (a) and (b).
- Carolina Vegetation Survey (CVS) and NC Ecosystem Enhancement Program (NCEEP). 2007. CVS-NCEEP Data Entry Tool v. 2.2.7. University of North Carolina, Raleigh, NC.
- Lee, M., Peet R., Roberts, S., Wentworth, T. CVS-NCEEP Protocol for Recording Vegetation, Version 4.1, 2007.
- Faber-Langendoen, D., Rocchio, J., Schafale, M., Nordman, C., Pyne, M., Teague, J., Foti, T., Comer, P. (2006), *Ecological Integrity Assessment and Performance Measures for Wetland Mitigation*. NatureServe, Arlington, Virginia.
- Harman, W.A., G.D. Jennings, J.M. Patterson, D.R. Clinton, L.O. Slate, A.G. Jessup, J.R. Everhart, and R.E. Smith. 1999. Bankfull hydraulic geometry relationships for North Carolina streams. *Wildland Hydrology*. AWRA Symposium Proceedings. D.S. Olsen and J.P. Potyondy, eds. American Water Resources Association. June 30-July 2, 1999. Bozeman, MT.
- Medina, M.A., Reid, J.C., Carpenter, R.H. 2004. Physiography of North Carolina Map. North Carolina Geologic Survey. Raleigh, NC.
- North Carolina Department of Environment and Natural Resources (NCDENR). 2006. Water Quality Stream Classifications for Streams in North Carolina. Water Quality Section, November 2006. Raleigh, NC.
- North Carolina Ecosystem Enhancement Program. 2009. Upper White Oak River Basin Restoration Priorities. NCDENR. Raleigh, North Carolina. [Online WWW]. Available URL: <u>http://www.nceep.net/services/restplans/Upper_White</u> Oak_RBRP_2009.pdf.
- ____. 2011. Monitoring Requirements and Performance Standards for Stream and/or Wetland Mitigation. November 7, 2011.
- Rosgen, D. L. 1994. A classification of natural rivers. Catena 22:169-199.
- ____. 1996. Applied River Morphology. Wildland Hydrology Books, Pagosa Springs, Colo.
- ____. 2001. A Practical Method of Computing Streambank Erosion Rate. Wildland Hydrology, Inc. Pagasa Spring, Colorado.
- Schafale, M. P., and A. S. Weakley. 1990. Classification of the natural communities of North Carolina, third approximation. North Carolina Natural Heritage Program. Division of Parks and Recreation, NCDENR. Raleigh, NC.
- United States Army Corps of Engineers. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. Environmental Laboratory. US Army Engineer Waterways Experiment Station. Vicksburg, MS.
- ____. 1997. Corps of Engineers Wetlands Research Program. Technical Note VN-rs-4.1. Environmental Laboratory. U.S. Army Engineer Waterways Experiment Station. Vicksburg, MS.
- ____. 2003. Stream Mitigation Guidelines, April 2003, U.S. Army Corps of Engineers. Wilmington District.

- ____. 2002. Climate Information-Wetlands Retrieval for North Carolina. Natural Resources Conservation Service. Onslow County, Morganton WETS Station:NC5838. [Online WWW]. Available URL: (http://www.wcc.nrcs.usda.gov/ftpref/support/climate/wetlands/nc/37023.txt).
- United States Department of Agriculture, Natural Resources Conservation Service Soil Survey Division. Personal communication, 2011. NC BEHI/NBS rating curve.
- United States Army Corps of Engineers (USACE). 2005. Technical standard for water-table monitoring of potential wetland sites. *ERDC TN-WRAP-05-2*, Vicksburg, MS. <u>http://el.erdc.usace.army.mil/wrap/pdf/tnwrap05-2.pdf</u>
- _____. 2003. Stream Mitigation Guidelines. Prepared with cooperation from US Environmental Protection Agency, NC Wildlife Resources Commission, and the NC Division of Water Quality. <u>www.saw.usace.army.mil/wetlands/Mitigation/stream_mitigation.html</u>
- ____. 2007. Information Regarding Stream Restoration in the Outer Coastal Plain of North Carolina. Prepared with cooperation of NCDWQ. Version 2.

APPENDIX A

Figures 1 - 3, Tables 1 - 4

Table 1. F	Project Components an	d Mitigation Cred	its						
UT to Mill	Swamp Restoration P	roject: EEP Projec	t No ID. 950)19					
				Mitigation	Credits				
	Stream	Riparian We	etland	Non	-riparian Wet	lland	Buffer	Nitrogen Nutrient Offse	Phosphorus t Nutrient Offset
Туре	R, E1	R	Е						
Totals	4,006 SMU	4.0 WMU	0						
			-	Project Com	ponents				
Project C	omponent or Reach ID	Stationing/ Location	Existing Acr	Footage/ eage	Approach		Restoration/RestorationRestorationFootage orEquivalentAcreage		Mitigation Ratio
Reach UT1a		10+00 - 16+00	600	LF	Enhancem	ent Level I	400 SMU	600 LF	1.5:1
Reach UT1b		16+00 - 36+93	2,13	1 LF	Headwater	Restoration	2,093 SMU	2,093 LF	1:1
Reach UT1c		37+24 - 52+37	1,350 LF		Single thread Restoration		1,513 SMU	1,513 LF	1:1
Reach UT3		10+00 - 23+69	1,060 LF		Cattle Exclusion		N/A	N/A	N/A
Wetland Are	a #1	See plan sheets	0.0 AC		Restoration		4.0 WMU	4.0 WMU 4.0 AC	
		-	0	Component Su	ummation	-			
Restoration	Level	Stream (LF)	Ripa	rian Wetland	(AC)	Non-riparia	n Wetland (AC)	Buffer (SF) Upland (AC)
			Riverine	Non-R	Riverine				
	Restoration	3,606	4.0						
]	Enhancement I	600							
H	Enhancement II								
	Creation								
	Preservation								
High	Quality Preservation		ļ						
	L .	<u> </u>		BMP Eler	nents				
Element	Location	Purpose/Function		Notes					
DMD Elamor	nta: DD-Diaratantian Cal	1: SE- Sand Filtor: SV	V- Stormwata	r Watland: W	DD- Wat Data	ntion Dond: D	DD-Dry Datantia		
Divir Elemen	ilts. DR- Dioletention Cer ilter Strip: S- Grassed Swi	r_{1} , $SF = Sand Finer, SV$	v- Stornwate	I welland, w	Dr- wei Deie	intion Folia, D	Dr - Dry Detentio	11	
г опц, г 5– г	nier surp, s- Grassed Swa	ale, LS- Level Splead	ici, ivi-ivatura	ii iiiiiiiaiioii /	Alca				

Table 2. Project Activity and Reporting History				
UT to Mill Swamp Restoration Project: EEP Project No ID. 95	5019			
Activity or Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery	
Mitigation Plan Prepared	N/A	N/A	Aug-12	
Mitigation Plan Amended	N/A	N/A	Sep-12	
MItigation Plan Approved	N/A	N/A	Nov-12	
Final Design – (at least 90% complete)	N/A	N/A	Mar-13	
Construction Begins	N/A	N/A	Apr-13	
Temporary S&E mix applied to entire project area	N/A	N/A	N/A	
Permanent seed mix applied to entire project area	N/A	N/A	Jun-13	
Planting of live stakes	Fall/Winter 2013	N/A	N/A	
Planting of bare root trees	N/A	N/A	Jun-13	
End of Construction	N/A	N/A	Jun-13	
Survey of As-built conditions (Year 0 Monitoring-baseline)	N/A	Aug-13	Aug-13	
Year 1 Monitoring	Dec-13	N/A	N/A	
Year 2 Monitoring	Dec-14	N/A	N/A	
Year 3 Monitoring	Dec-15	N/A	N/A	
Year 4 Monitoring	Dec-16	N/A	N/A	
Year 5 Monitoring	Dec-17	N/A	N/A	
Year 6 Monitoring	Dec-18	N/A	N/A	
Year 7 Monitoring	Dec-19	N/A	N/A	

Table 3. Project Contacts Table	
UT to Mill Swamp Restoration Project: EEP Pro	oject ID No. 95019
Designer	
Michael Baker Engineering Inc	8000 Regency Parkway, Suite 600
Witchael Baker Englicering, Inc.	Cary, NC 27518
	Contact:
	Kayne Van Stell, Tel. 919-481-5730
Construction Contractor	
River Works Inc	6105 Chapel Hill Road
Kiver works, me.	Raleigh, NC 27607
	Contact:
	Phillip Todd, Tel. 919-582-3575
Planting Contractor	
River Works Inc	6105 Chapel Hill Road
Kiver works, me.	Raleigh, NC 27607
	Contact:
	Phillip Todd, Tel. 919-582-3575
Seeding Contractor	
River Works Inc	6105 Chapel Hill Road
Kiver works, me.	Raleigh, NC 27607
	Contact:
	Phillip Todd, Tel. 919-582-3575
Seed Mix Sources	Green Resources, Tel. 336-855-6363
Nursery Stock Suppliers	Mellow Marsh Farm, 919-742-1200
	ArborGen, 843-528-3204
	Superior Tree, 850-971-5159
Monitoring Performers	
Michael Baker Engineering, Inc.	8000 Regency Parkway, Suite 600 Cary, NC 27518
	Contact:
Stream Monitoring Point of Contact	Dwayne Huneycutt, Tel. 919-481-5745
Vegetation Monitoring Point of Contact	Dwayne Huneycutt, Tel. 919-481-5745
Wetland Monitoring Point of Contact	Dwayne Huneycutt, Tel. 919-481-5745

Table 4. Project Attributes UT to Mill Swamp Restoration Project: FEP Project ID No. 95019							
UT to will Swallp Restoration Project. EET Project ID No. 35013	Project Informat	tion					
Project Name	UT to Mill Swamp	Restoration Proje	ct				
County	Onslow	j-					
Project Area (acres)	19.6						
Project Coordinates (latitude and longitude)	34 9377 N -77 58	97 W					
Wate	ershed Summary In	formation					
Physiographic Province	Inner Coastal Plain						
River Basin	White Oak						
USGS Hydrologic Unit 8-digit and 14-digit	03030001 / 030300	01010020					
DWO Sub-basin	03-05-02	01010020					
Project Drainage Area (AC)	421 (d/s main stem	UT1)					
Project Drainage Area Percentage of Impervious Area	<1%	011)					
CGIA Land Use Classification	2 01 03 99 Other F	lay Rotation or F	Pasture: 413				
	Eorest (52%)	iuy, itolution, or i	usture, 115				
NCEEP Land Use Classification for UT to Mill Swamp Watershed	Agriculture (44%)						
(White Oak River Basin Restoration Priorities, 2010)	Impervious Cover ((0.6%)					
Stroom	n Reach Summary	Unformation					
Daramatars		Reach UT1		Reach UT3			
Length of Peach (LE)		4 091		1 060			
Valley Classification (Bosgen)		4,071 X		1,000 X			
Drainage Area (AC)		421		23			
NCDWO Stream Identification Score		421		23			
NCDWQ Stream Identification Score		C: NSW		C: NSW			
		G/F		C, 115 W			
Morphological Description (Rosgen stream type)	(Channel	ized Headwater S	ystem)	Intermittent Ditch (N/A)			
Evolutionary Trend		Gc→F		Intermittent Ditch (N/A)			
Underlying Mapped Soils	1	Mk, St, Ly, FoA		Mk, St			
Drainage Class	Poorly draine	d, somewhat poor	rly drained	Poorly drained, somewhat poorly drained			
Soil Hydric Status		Hydric	Hydric				
Average Channel Slope (ft/ft)		0.0041	0.0058				
FEMA Classification		N/A	N/A				
Native Vegetation Community	Coastal Pl	ain Small Stream	Coastal Plain Small Stream Swamp				
Percent Composition of Exotic/Invasive Vegetation		~10%	<5%				
We	tland Summary Inf	ormation					
Parameters	Wetland 1 (Non-J	urisdictional W1)				
Size of Wetland (AC)	4.0						
Wetland Type	Riparian Riverine						
Manned Soil Series	Mk (Muckalee). St	(Stallings), Ly (L	vnchburg)				
Drainage Class	Poorly drained, son	newhat poorly dra	ined				
Soil Hydric Status	Hydric						
Source of Hydrology	Groundwatar						
Source of Hydrology	Broundwater	. 10 11:0	1. 1 1 1	1			
Hydrologic Impairment	Partially (disconnected floodplain from ditches and channel incision)						
Native Vegetation Community	Coastal Plain Small	l Stream Swamp,	Successional				
Percent Composition of Exotic/Invasive Vegetation	~5%						
F	Regulatory Conside	rations					
Regulation		Applicable	Resolved	Supporting Documentation			
Waters of the United States – Section 404		Yes	Yes	See Mitigation Plan			
Waters of the United States – Section 401		Yes	Yes	See Mitigation Plan			
Endangered Species Act		No	N/A	See Mitigation Plan			
Historic Preservation Act		No	N/A	See Mitigation Plan			
Coastal Zone Management Act (CZMA)/ Coastal Area Management A	Act (CAMA)	No	N/A	See Mitigation Plan			
FEMA Floodplain Compliance		No	N/A	See Mitigation Plan			
Essential Fisheries Habitat		No	N/A	See Mitigation Plan			
Source: White Oak River Basin Restoration Priorities, 2010 (http://www.	ww.nceep.net/service	es/restplans/FINA	L%20RBRP%20	White%20Oak%2020110523.pdf)			

APPENDIX B

Morphological Summary Data (Tables 5 and 6), Cross-section Plots, Profile Plots

 Table 5. Baseline Stream Summary

 UT to Mill Swamp Restoration Project: EEP Project ID No. 95019

Parameter	USGS Gauge	Regio (Ha	onal Curve Int rman et al, 199	erval 19)*	Pre-Existing Condition ¹					
Dimension and Substrate - Riffle	0	LL	UL	Ea.	Min	Mean	Med	Max	SD	n
BF Width (ft)		23.0	80.0	9.9	6.8			8.7		2
Floodprone Width (ft)					8.2			11.8		2
BF Mean Depth (ft)		2.3	5.8	1.3	0.8			1.0		2
BF Max Depth (ft)					1.1			1.4		2
BF Cross-sectional Area (ft ²)		80.0	300.0	16.2	5.6			8.6		2
Width/Depth Ratio					8			9		2
Entrenchment Ratio					1.2			1.4		2
Bank Height Ratio					4.2			2.8		2
d50 (mm)						0.25				12
Bottorn						0.25				1
Channel Beltwidth (ft)										
Radius of Curvature (ft)										
Rc:Bankfull width (ft/ft)										
Meander Wavelength (ft)										
Marcha Wild Dati										
Meander Width Katio										
Profile Diffe L and (f)										
Riffle Length (II)										
Riffle Slope (ft/ft)										
Pool Length (ft)										
Pool Spacing (ff)								1.16		
Pool Max Depth (ft)					1.1			1.16		2
Pool Volume (ft ³)										
Substrate and Transport Parameters										
Ri% / Ru% / P% / G% / S%										
SC% / Sa% / G% / B% / Be%										
d16 / d35 / d50 / d84 / d95						0.	10 / 0.15 / 0	.25 / 1.2 / 2.2	7 ²	
Reach Shear Stress (competency) lb/f2										
Max part size (mm) mobilized at bankfull (Rosgen Curve)										
Stream Power (transport capacity) W/m ²										
Additional Reach Parameters										
Drainage Area (SM)								0.66		
Impervious cover estimate (%)										
Rosgen Classification						Gc				
BF Velocity (fps)					0.8			1.2		2
BF Discharge (cfs)		290.0	2000.0	66.0		6.48				
35										
Channel length (ft) ²						4091				
Sinuosity						1 13				
Water Surface Slope (Channel) (ff/ff)						0.0045				2
BE slope (ff/ff)						0.0012				
Bankfull Floodnlain Area (acres)										
BEHI VI.% / I.% / M% / H% / VH% / F%										
Channel Stability or Habitat Metric										
Biological or Other										
Diological of Other										

² Bulk samples taken since pebble count procedure is not applicable for sand-bed streams.

³ Values were chosen based on sand-bed reference reach data and past project evaluations.

⁴ Composite reference reach information from Johannah Creek, Johnston County; Panther Branch, Brunswick County; Rocky Swamp, Halifax County; and Beaver Dam Branch, Jones County

MICHAEL BAKER ENGINEERING, INC. FINAL BASELINE MONITORING REPORT UT TO MILL SWAMP RESTORATION PROJECT (EEP PROJECT NO. 95019) Table 5. Baseline Stream Summary

UT to Mill Swamp Restoration Project: EEP Project ID No. 950

Reach UT1c (1,513 LF)													
Donomoton	Reference Reach(es) Data												
rarameter	Beaverdam Branch						NC Coastal Plain Composite Data ⁴						
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	
BF Width (ft)													
Floodprone Width (ft)													
BF Mean Depth (ft)													
BF Max Depth (ft)													
BF Cross-sectional Area (ft ²)		24		17		2	/.8			95.9			
width/Depth Ratio	10			17		2	8			14			
Bank Height Patio	10			11		2	4			13			
	1.0			1.5		2	1.0			1.5			
d50 (mm)		0.5											
rauern													
Channel Beltwidth (ft)													
Radius of Curvature (ft)													
Rc:Bankfull width (ft/ft)	1.8			2.4			1.5			3.0			
Meander Wavelength (ft)													
Meander Width Ratio							2.0			63			
Profile							2.0			0.5			
Riffle Length (ft)													
Riffle Slope (ff/ft)													
Pool Length (ft)													
Pool Spacing (ft)													
Pool Max Depth (ft)													
Pool Volume (ff ³)													
Calledon to and Transmont Demonstration													
Substrate and Transport Parameters $D_{10}^{10} / D_{10}^{10} / D_{10}^{10} / C_{10}^{10} / S_{10}^{10}$													
$SC_{0}^{0} / S_{2}^{0} / C_{0}^{0} / B_{0}^{0} / B_{0}^{0}$													
d16 / d35 / d50 / d84 / d95			03/04/	05/09/12									
Reach Shear Stress (competency) lb/f ²													
Max part size (mm) mobilized at bankfull (Rosgen Curve)													
Stream Power (transport capacity) W/m ²													
Additional Reach Parameters													
Drainage Area (SM)				3.0			1.0			19.5			
Impervious cover estimate (%)													
Rosgen Classification		C5c						E5/C5					
BF Velocity (fps)		1.5					1.0			1.4			
BF Discharge (cfs)		37					10			127			
35													
Channel length (ft) ²													
Sinuosity		1.66					1.22			1.77			
Water Surface Slope (Channel) (ft/ft)		0.0004					0.0004			0.0022			
BF slope (ft/ft)													
Bankfull Floodplain Area (acres)													
BEHI VL% / L% / M% / H% / VH% / E%													
Channel Stability or Habitat Metric													
Biological or Other													

MICHAEL BAKER ENGINEERING, INC. FINAL BASELINE MONITORING REPORT UT TO MILL SWAMP RESTORATION PROJECT (EEP PROJECT NO. 95019)

Table 5. Baseline Stream Summary

UT to Mill Swamp Restoration Project: EEP Project ID No. 950

Reach UT1c (1,513 LF)												
Parameter			De	sign		As-built						
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
BF Width (ft)		10.3				1	10.1			13.8		4
Floodprone Width (ft)		>100				1	80.1			105.0		4
BF Mean Depth (ft)		0.7				1	0.6			1.2		4
BF Max Depth (ft)		1.0				1	1.1			2.0		4
BF Cross-sectional Area (ft ²)		/.6				1	7.5			12.3		4
Width/Depth Ratio		14				1	8.3			19.4		4
Entrenchment Ratio		>10				1	1.0			9.4		4
Bank Height Ratio		1.0				1	1.0			1.1		4
d50 (mm)		0.25										
Pattern						2						
Channel Beltwidth (ft)	35			60		3	38.0	79.0		120.0		
Radius of Curvature (ft)	20			30		3	21.0	26.0		31.0		
Rc:Bankfull width (ft/ft)	2.0			3.0		3	38.0	79.0		120.0		
Meander Wavelength (ft)	80			110		3	72.0	104.0		124.0		
Meander Width Ratio	35			6.0		3	3.5	6.0		8.0		
Profile	5.5			0.0			5.5	0.0		0.0		
Riffle Length (ft)												
Riffle Slope (ft/ft)	0.004			0.010			0.0046	0.0043		0.0039		
Pool Length (ft)												
Pool Spacing (ft)	30			80			41		72	57		
Pool Max Depth (ft)		1.6										
Pool Volume (ft ³)												
Substrate and Transport Parameters												
Ri% / Ru% / P% / G% / S%												
SC% / Sa% / G% / B% / Be%												
d16 / d35 / d50 / d84 / d95												
Reach Shear Stress (competency) lb/f^2		0.149										
Max part size (mm) mobilized at bankfull (Rosgen Curve)												
Stream Power (transport capacity) W/m ²		4.181										
Additional Reach Parameters												
Drainage Area (SM)				0.66						0.66		
Impervious cover estimate (%)												
Rosgen Classification		C5						C5				
BF Velocity (fps)		1.76						3.0				
BF Discharge (cfs)		12.9						340.0				
35								3523				
Channel length (ft) ²		1453						4238				
Sinuosity		1.24						1.20				
Water Surface Slope (Channel) (ft/ft)		0.0038						0.0042				
BF slope (ft/ft)								0.0054				
Bankfull Floodplain Area (acres)												
BEHI VL% / L% / M% / H% / VH% / E%												
Channel Stability or Habitat Metric												
Biological or Other												

MICHAEL BAKER ENGINEERING, INC. FINAL BASELINE MONITORING REPORT UT TO MILL SWAMP RESTORATION PROJECT (EEP PROJECT NO. 95019)

Table 6. Morphology and Hydraulic Monitoring Summary UT to Mill Swamp Restoration Project: EEP Project ID No. 95019

Reach UT1c (1,513 LF)																						-						
			Cross-sect	tion X-1 (Rift	ffle)					Cross	-section X-2	(Pool)					Cro	ss-section X	-3 (Pool)					Cross-	section X-4 ((Riffle)		
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation																												
BF Width (ft)	11.9							15.4							21.3							11.2						
BF Mean Depth (ft)	0.6							1.1							0.6							0.7						
Width/Depth Ratio	18.9							14.4							33.9							16.5						
BE Cross-sectional Area (ft ²)	7.5							16.6							13.4							7.5						
BF Max Depth (ft)	1.0							2.4							15.4							1.1						
Width of Eloodprope Area (ft)	104.5							107.9							117.0							104.5						
Entronohmont Patio	104.5							7.0							5.5							104.5						
Entrenchment Ratio	8.8							7.0							5.5							9.4						
Bank Height Ratio	1.0							1.0							1.0							1.1						
wetted Perimeter (ff)	13.2							17.6							22.5							12.5						
Hydraulic Radius (ft)	0.6							0.9							0.6							0.6						
Based on current/developing bankfull feature																												
BF Width (ft)																												
BF Mean Depth (ft)																												
Width/Depth Ratio																												
BF Cross-sectional Area (ft ²)																												
BF Max Depth (ft)																												
Width of Floodprone Area (ft)																												
Entrenchment Ratio																												
Bank Height Ratio																												
Wetted Perimeter (ft)																												
Hydraulic Radius (ft)																												
Cross Sectional Area between end pins (ft ²)	-							-																				
d50 (mm)	-							-																				
			Cross-sect	tion X-5 (Rif	ffle)					Cross	-section X-6	(Pool)					C	oss-section '	(Pool)					Cross-	section X-8 ((Riffle)		
Dimension and substrate	Base	MV1	Cross-sect	tion X-5 (Riff	ffle) MV4	MV5	MV+	Base	MV1	Cross- MV2	-section X-6	(Pool) MV4	MV5	MV+	Base	MV1	Cı MY2	oss-section '	7 (Pool) MV4	MV5	MV+	Base	MV1	Cross- MV2	section X-8 ((Riffle) MV4	MV5	MV+
Dimension and substrate	Base	MY1	Cross-sect MY2	tion X-5 (Riff MY3	ffle) MY4	MY5	MY+	Base	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base	MY1	Cı MY2	oss-section MY3	r (Pool) MY4	MY5	MY+	Base	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation	Base	MY1	Cross-sect MY2	tion X-5 (Riff MY3	ffle) MY4	MY5	MY+	Base	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base	MY1	Cı MY2	oss-section MY3	r (Pool) MY4	MY5	MY+	Base	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft)	Base	MY1	Cross-sect MY2	tion X-5 (Riff MY3	ffle) MY4	MY5	MY+	Base	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base	MY1	Ci MY2	oss-section ' MY3	' (Pool) MY4	MY5	MY+	Base	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft)	Base 13.8 0.7	MY1	Cross-sect MY2	tion X-5 (Rift MY3	ffle) MY4	MY5	MY+	Base 15.1 0.8	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1	MY1	Cı MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio	Base 13.8 0.7 19.4	MY1	Cross-sect MY2	tion X-5 (Riff MY3	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1	MY1	Cross- MY2	-section X-6 MY3	MY4	MY5	MY+	Base 15.5 1.1 14.5	MY1	Cı MY2	oss-section MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²)	Base 13.8 0.7 19.4 9.9	MY1	Cross-sect MY2	tion X-5 (Riff MY3	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7	MY1	Ct MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft)	Base 13.8 0.7 19.4 9.9 1.3	MY1	Cross-sect MY2	tion X-5 (Riffi	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0	MY1	Cı MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Maan Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft)	Base 13.8 0.7 19.4 9.9 1.3 112.3	MY1	Cross-sect MY2	tion X-5 (Rifl MY3	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4	MY1	Cı MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio	Base 13.8 0.7 19.4 9.9 1.3 112.3 8.1	MY1	Cross-sect MY2	tion X-5 (Riff	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3 7.6	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4 8.5	MY1	Cı MY2	oss-section 7 MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1 7.9	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio	Base 13.8 0.7 19.4 9.9 1.3 112.3 8.1 1.0	MY1	Cross-sect MY2	tion X-5 (Riff	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3 7.6 1.0	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4 8.5 1.0	MY1	Ci MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1 7.9 1.1	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft)	Base 13.8 0.7 19.4 9.9 1.3 112.3 8.1 1.0 15.3	MY1	Cross-sect MY2	tion X-5 (Riff	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3 7.6 1.0 16.6	MY1	Cross. MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4 8.5 1.0 17.7	MY1	Cr MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1 7.9 1.1 12.5	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft)	Base 13.8 0.7 19.4 9.9 1.3 112.3 8.1 1.0 15.3 0.6	MY1	Cross-sect MY2	tion X-5 (Riff	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3 7.6 1.0 16.6 0.7	MY1	Cross MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4 8.5 1.0 17.7 0.9	MY1	Cı MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1 7.9 1.1 12.5 1.0	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature	Base 13.8 0.7 19.4 9.9 1.3 112.3 8.1 1.0 15.3 0.6	MY1	Cross-sect MY2	tion X-5 (Rifl MY3	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3 7.6 1.0 16.6 0.7	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4 8.5 1.0 17.7 0.9	MY1	Ct MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1 7.9 1.1 12.5 1.0	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width (ft)	Base 13.8 0.7 19.4 9.9 1.3 112.3 8.1 1.0 15.3 0.6	MY1	Cross-sect MY2	tion X-5 (Rifl MY3	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3 7.6 1.0 16.6 0.7	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4 8.5 1.0 17.7 0.9	MY1	Ct MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1 7.9 1.1 12.5 1.0	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width (ft) BE Mean Depth (ft)	Base 13.8 0.7 19.4 9.9 1.3 112.3 8.1 1.0 15.3 0.6	MY1	Cross-sect MY2	tion X-5 (Riff MY3	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3 7.6 1.0 16.6 0.7	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4 8.5 1.0 17.7 0.9	MY1	Cr MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1 7.9 1.1 12.5 1.0	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio	Base 13.8 0.7 19.4 9.9 1.3 112.3 8.1 1.0 15.3 0.6	MY1	Cross-sect MY2	tion X-5 (Riff MY3	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3 7.6 1.0 16.6 0.7	MYI	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4 8.5 1.0 17.7 0.9	MY1	Cr MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1 7.9 1.1 12.5 1.0	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft?) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio	Base 13.8 0.7 19.4 9.9 1.3 112.3 8.1 1.0 15.3 0.6	MY1	Cross-sect MY2	tion X-5 (Rifl MY3	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3 7.6 1.0 16.6 0.7	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4 8.5 1.0 17.7 0.9	MY1	Ct MY2	oss-section ' MY3	' (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1 7.9 1.1 12.5 1.0	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²)	Base 13.8 0.7 19.4 9.9 1.3 112.3 8.1 1.0 15.3 0.6	MY1	Cross-sect MY2	tion X-5 (Rifl MY3	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3 7.6 1.0 16.6 0.7	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4 8.5 1.0 17.7 0.9	MY1	Ct MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1 7.9 1.1 12.5 1.0	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width of Fross-sectional Area (ft ²) BF Max Depth (ft) Width of BF Max Depth (ft)	Base 13.8 0.7 19.4 9.9 1.3 112.3 8.1 1.0 15.3 0.6	MY1	Cross-sect MY2	tion X-5 (Rifl MY3	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3 7.6 1.0 16.6 0.7	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4 8.5 1.0 17.7 0.9	MY1	Ct MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1 7.9 1.1 12.5 1.0	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft ²)	Base 13.8 0.7 19.4 9.9 1.3 112.3 8.1 1.0 15.3 0.6	MY1	Cross-sect MY2	tion X-5 (Riff	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3 7.6 1.0 16.6 0.7	MY1	Cross- MY2	-section X-6 MY3	r (Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4 8.5 1.0 17.7 0.9	MY1	Ci MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1 7.9 1.1 12.5 1.0	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft?) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft?) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio	Base 13.8 0.7 19.4 9.9 1.3 112.3 8.1 1.0 15.3 0.6	MY1	Cross-sect MY2	tion X-5 (Rifl MY3	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3 7.6 1.0 16.6 0.7	MYI	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4 8.5 1.0 17.7 0.9	MY1	Cr MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1 7.9 1.1 12.5 1.0	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft? BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft?) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio	Base 13.8 0.7 19.4 9.9 1.3 112.3 8.1 1.0 15.3 0.6	MY1	Cross-sect MY2	tion X-5 (Rifl MY3	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3 7.6 1.0 16.6 0.7	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4 8.5 1.0 17.7 0.9	MY1	Ct MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1 7.9 1.1 12.5 1.0	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) Based on current/developing bankfull feature BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft)	Base 13.8 0.7 19.4 9.9 1.3 112.3 8.1 1.0 15.3 0.6	MY1	Cross-sect MY2	tion X-5 (Rifl MY3	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3 7.6 1.0 16.6 0.7	MY1	Cross- MY2	-section X-6 MY3	r (Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4 8.5 1.0 17.7 0.9	MY1	Ct MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1 7.9 1.1 12.5 1.0	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft ²) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft)	Base 13.8 0.7 19.4 9.9 1.3 112.3 8.1 1.0 15.3 0.6	MY1	Cross-sect MY2	tion X-5 (Rifl MY3	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3 7.6 1.0 16.6 0.7	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4 8.5 1.0 17.7 0.9	MY1	Ct MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1 7.9 1.1 12.5 1.0	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+
Dimension and substrate Based on fixed baseline bankfull elevation BF Width (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft) BF Mean Depth (ft) Width/Depth Ratio BF Cross-sectional Area (ft ²) BF Max Depth (ft) Width of Floodprone Area (ft) Entrenchment Ratio Bank Height Ratio Bank Height Ratio Bank Height Ratio Wetted Perimeter (ft) Hydraulic Radius (ft ²)	Base 13.8 0.7 19.4 9.9 1.3 112.3 8.1 1.0 15.3 0.6	MY1	Cross-sect	tion X-5 (Rifl MY3	ffle) MY4	MY5	MY+	Base 15.1 0.8 20.1 11.3 1.8 114.3 7.6 1.0 16.6 0.7	MY1	Cross- MY2	-section X-6 MY3	(Pool) MY4	MY5	MY+	Base 15.5 1.1 14.5 16.7 2.0 132.4 8.5 1.0 17.7 0.9	MY1	Ct MY2	oss-section ' MY3	7 (Pool) MY4	MY5	MY+	Base 10.1 1.2 8.3 12.3 2.0 80.1 7.9 1.1 12.5 1.0 -	MY1	Cross- MY2	section X-8 (MY3	(Riffle) MY4	MY5	MY+

Looking at the Left Bank

Looking at the Right Bank

(As-Built Data - collected August 2013)

Looking at the Left Bank

20

0

Looking at the Right Bank

80

100

120

60

Station (ft)

40

Looking at the Left Bank

Looking at the Right Bank

Looking at the Left Bank

Looking at the Right Bank

	Stream			BKF	Max BKF					
Feature	Туре	BKF Area	BKF Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Riffle	С	7.5	11.15	0.67	1.11	16.52	1.1	9.4	52.3	52.39

Looking at the Left Bank

Looking at the Right Bank

	Stream			BKF	Max BKF					
Feature	Туре	BKF Area	BKF Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Riffle	С	9.9	13.83	0.71	1.31	19.41	1	8.1	50.85	50.91

Looking at the Left Bank

Looking at the Right Bank

Looking at the Left Bank

Looking at the Right Bank

Looking at the Left Bank

Looking at the Right Bank

APPENDIX C

Vegetation Data (Tables 7 and 8)

Table 7. Vegetation Species Planted Across the Restoration Site UT to Mill Swamp Restoration Project: EEP Project ID No. 95019								
	G N	% Planted by	Total Number					
Botanical Name	Common Name	Species	of Stems					
Headwate	er Riparian Buffer Plant	ings - Overstory						
9	' x 12' spacing - 403 sten	ns/Acre						
Fraxinus pennsylvanica	Green Ash	10%	200					
Quercus michauxii	Swamp Chestnut Oak	20%	400					
Nyssa biflora	Swamp Black Gum	25%	500					
Liriodendron tulipifera	Tulip Poplar	10%	200					
Quercus lyrata	Overcup Oak	15%	300					
Quercus nigra	Water Oak	20%	400					
Understory Hea	dwater Riparian Buffer	Plantings - Unders	story					
1	8' x 15' spacing - 161 ster	ms/Acre						
Clethra alnifolia	Sweet Pepperbush	15%	120					
Cyrilla racimiflora	Titi	20%	160					
Itea virginica	Sweetspire	15%	120					
Magnolia virginiana	Sweet Bay Magnolia	15%	120					
Lyonia lucida	Fetterbush	20%	160					
Persea palustris	Red bay	15%	120					
Riparian	Riparian Wetland Buffer Plantings – Overstory							
9	9'x 12' spacing - 403 stem	ns/Acre						
Liriodendron tulipifera	Tulip Poplar	15%	480					
Nyssa biflora	Swamp Black Gum	15%	480					
Quercus michauxii	Swamp Chestnut Oak	15%	480					
Quercus lyrata	Overcup Oak	15%	480					
Quercus nigra	Water Oak	15%	240					
Quercus phellos	Willow Oak	7.5%	240					
Quercus pagoda	Cherrybark Oak	7.5%	320					
Ulmus americana	American Elm	15%	480					
Riparian	Wetland Buffer Planting	gs – Understory						
1	8'x 15' spacing - 161 ster	ns/Acre						
Cyrilla racimiflora	Titi	20%	260					
Itea virginica	Sweetspire	10%	130					
Leucothoe racemosa	Swamp Doghobble	10%	130					
Carpinus caroliniana	Ironwood	15%	190					
Magnolia virginiana	Sweet Bay Magnolia	20%	258					
Persea palustris	Red bay	10%	130					
Vaccineum corymbosum	Highbush Blueberry	15%	190					
	Riparian Live Stake Pla	ntings						
Cephalanthus occidentalis	Buttonbush	0%	None					
Salix nigra	Black Willow	0%	None					
Salix sericea	Silky Willow	0%	None					
Sambucus canadensis	Elderberry	0%	None					
Note: Riparian Live Stakes will	be planted as needed in the I	Fall (dormant season)	of 2013					

Table 8. Stem Count for Each Species Arranged by Plot UT to Mill Swamp Restoration Project: FEP Project ID No. 95019										
Tree Species	Plots									
1	1	2	3	4	5	6				
Carpinus caroliniana				3	1					
Clethra alnifolia										
Cyrilla racimiflora										
Fraxinus pennsylvanica										
Itea virginica	1					1				
Leucothoe racemosa										
Liriodendron tulipifera	4					3				
Lyonia lucida										
Magnolia virginiana										
Nyssa biflora	1	1	2	4	1	2				
Quercus lyrata	3	1	1	1	4	1				
Quercus michauxii	3	4	7	1	5					
Quercus nigra	1	2		2						
Quercus pagoda		2		2	2	1				
Quercus phellos	1	1	1	5	3	2				
Persea palustris	2	2				2				
Ulmus americana				1		3				
Vaccineum corymbosum					1					
Unknown	2	2	5		2	2				
Stems/plot	18	15	16	19	19	17				
Stems/acre	720	600	640	760	760	680				
Total Stems/ Acre for Year 0 As-Built (Baseline Data)	693									

APPENDIX D

As-Built Plan Sheets/Record Drawings

	STI	REAM CO	NVENTION RCEDES SHEE	NAL S ET 1-B	YMBOLS					GEN	VERAL 1
		ROOT WAD		—@— со	NSERVATION EA	SEMENT					
	- Ri			- 210 EXI	ISTING MAJOR C	ONTOUR		1. CON	STRUCTION	N BEGAN IN APRIL 2	013 AND WAS CC
								2. VEG	ETATION PL	ANTING WAS COM	PLETED IN JUNE
		LOG WEIR		EXI							
		LOG ROLLER		LIM	IITS OF DISTURB	ANCE					
			×	DIT	CH PLUG						
		GRADE CONTROL LO	G JAM	CH	ANNEL FILL						
		PERMANENT STREAM		🚫 ван	KER CONTROL P	OINT					
				FLC	OW GAUGE						
	VEG	PLOT		O WE	ELL PIN					STANDAI	RD SPEC
				е РНС	OTO POINT			ERC	SION AN	N ID SEDIMENT (IORTH CARO CONTROL PL MARCH 200
										6.06 T	EMPORARY GRA
										6.60 T	EMPORARY SEDI
										6.62 T	EMPORARY SILT
										6.63 T	EMPORARY ROC
										6 70 T	EMPORARY STRE
	- - -	The following table lists the vega approximately 12 acres based or and densities were determined ocations per the vegetation spe	etation selection for the project son areas disturbed during construction of the planting and vary be to allocate the plan	site. Total planting ruction. Actual plac ased on apparent w	area was cement of species vetness of planting	VEGETATIC	ON SELE	ECTIO	N		
		Botanical Name	Common Name	% Planted by	Total Number of						
	-	Headw	vater Riparian Buffer Planting	Opecies	Otenis						
	l l			gs - Overstory							
	- //	Fraxinus pennsvlvanica	9' x 12' spacing - 403 stems Green Ash	gs - Overstory S/Acre 10%	200						
		Fraxinus pennsylvanica Quercus michauxii	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak	gs - Overstory 5/Acre 10% 20%	200 400						
		Fraxinus pennsylvanica Quercus michauxii Nyssa biflora Liriodendron tulipifera	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar	s - Overstory /Acre 10% 20% 25% 10%	200 400 500 200	The following table lists tempora	ry seed mix for the project	t site. All disturbe	ed areas were		
		Fraxinus pennsylvanica Quercus michauxii Vyssa biflora Liriodendron tulipifera Quercus lyrata	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak	Js - Overstory //Acre 10% 20% 10% 10% 15%	200 400 500 200 300	The following table lists tempora stabilized using mulch and temp	ry seed mix for the project orary seed as defined in t	t site. All disturbe he construction s	ed areas were pecifications.		
		Fraxinus pennsylvanica Quercus michauxii Vyssa biflora Liriodendron tulipifera Quercus lyrata Quercus nigra Understory H	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak Jeadwater Riparian Buffer Pla	Is - Overstory //Acre 10% 20% 25% 10% 15% 20% antings - Underste	200 400 500 200 300 400	The following table lists tempora stabilized using mutch and temp	ry seed mix for the project orary seed as defined in t	t site. All disturb he construction s	ed areas were pecifications.	1	
		Fraxinus pennsylvanica Quercus michauxii Vyssa biflora Liriodendron tulipifera Quercus lyrata Quercus nigra Understory H	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak leadwater Riparian Buffer Pla 18' x 15' spacing - 161 stems	J3 - Overstory //Acre 10% 20% 10% 25% 10% 20% antings - Underste	200 400 500 200 300 400 ory	The following table lists tempora stabilized using mutch and temp	ry seed mix for the project orary seed as defined in t Species Name	t site. All disturbe he construction s e Ra	ed areas were pecifications. te (Ibs./acre)]	
		Fraxinus pennsylvanica Quercus michauxii Vyssa biflora Liriodendron tulipifera Quercus lyrata Quercus nigra Understory H Clethra alnifolia 2vrilla racimiflora	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak leadwater Riparian Buffer Pla 18' x 15' spacing - 161 stems Sweet Pepperbush Titi	J3 - Overstory //Acre 10% 20% 10% 25% 10% 20% antings - Underste //Acre 15% 20%	200 400 500 200 300 400 ory 120 160	The following table lists tempora stabilized using mutch and temp Planting Dates September to March	ry seed mix for the project orary seed as defined in t Species Nam Rye Grain (Cool Se	t site. All disturbs he construction s e Ra ason)	ed areas were pecifications. te (lbs./acre) 130		
		Fraxinus pennsylvanica Quercus michauxii Vysse biflora Liriodendron tulipifera Quercus lyrata Quercus nigra Understory H Clethra alnifolia Cyrilla racimiflora Lea virginica	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak leadwater Riparian Buffer Pla 18' x 15' spacing - 161 stems Sweet Pepperbush Titi Sweetspire	J3 - Overstory //Acre 10% 20% 15% 20% 15% 20% antings - Underste 15% 20% 15% 20%	200 400 500 200 300 400 ory 120 160 120	The following table lists tempora stabilized using mutch and temp Planting Dates September to March April to August	ry seed mix for the project orary seed as defined in t Species Nam Rye Grain (Cool Se Browntop Millet (Warm	t site. All disturb he construction s e Ra ason) Season)	ed areas were pecifications. te (lbs./acre) 130 40		
		Fraxinus pennsylvanica Quercus michauxii Vyssa biflora Liriodendron tulipifera Quercus lyrata Quercus nigra Understory H Clethra alnifolia Cyrilla racimiflora tea virginica Magnolia virginiana yonia lucida	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak leadwater Riparian Buffer Pla 18' x 15' spacing - 161 stems Sweet Pepperbush Titi Sweetspire Sweet Bay Magnolia Fetterbush	IS - Overstory //Acre 10% 20% 25% 10% 15% 20% antings - Underste s/Acre 15% 20% 15% 15% 20% 20%	200 400 500 200 300 400 ory 120 160 120 160	The following table lists tempora stabilized using mutch and temp Planting Dates September to March April to August	ry seed mix for the project orary seed as defined in t Species Nam Rye Grain (Cool Se Browntop Millet (Warm	t site. All disturb he construction s e Ra ason) Season)	ed areas were pecifications. te (Ibs./acre) 130 40		
		Fraxinus pennsylvanica Quercus michauxii Vyssa biflora Liriodendron tulipifera Quercus lyrata Quercus nigra Understory H Clethra alnifolia Zyrilla racimiflora tea virginica Magnolia virginiana Lyonia lucida Persea palustris	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak Water Oak Ieadwater Riparian Buffer Pla Ia' x 15' spacing - 161 stems Sweet Pepperbush Titi Sweetspire Sweet Bay Magnolia Fetterbush Red bay ian Wetland Buffer Plantings	IS - Overstory //Acre 10% 20% 15% 20% antings - Underste s/Acre 15% 20% 15% 15% 15% - Overstory	200 400 500 200 300 400 ory 120 160 120 120 160 120 120	The following table lists tempora stabilized using mulch and temp Planting Dates September to March April to August Permanent herbaceous seed in	ry seed mix for the project orary seed as defined in t Species Name Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project i t mixtures were applied	t site. All disturb he construction s e Ra ason) Season) site were planter with temporary 4	ed areas were pecifications. te (Ibs./acre) 130 40 d throughout the seed, as definer	e floodplain and riparian d in the construction	
		Fraxinus pennsylvanica Quercus michauxii Vyssa biflora Liriodendron tulipifera Quercus lyrata Quercus nigra Understory H Clethra alnifolia Zyrilla racimiflora tea virginica Magnolia virginiana Lyonia lucida Parsea palustris Ripari	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak Ieadwater Riparian Buffer Pla Ia' x 15' spacing - 161 stems Sweet Pepperbush Titi Sweetspire Sweetspire Sweet Bay Magnolia Fetterbush Red bay ian Wetland Buffer Plantings 9' x 12' spacing - 403 stems.	IS - Overstory //Acre 10% 20% 15% 20% antings - Understus //Acre 15% 15% 15% 15% - Overstory //Acre	200 400 500 200 300 400 ory 120 160 120 120 160 120	The following table lists tempora stabilized using mulch and temp Planting Dates September to March April to August Permanent herbaceous seed i buffer areas. Permanent seed specifications.	ny seed mix for the project orary seed as defined in t Species Name Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project d mixtures were applied	t site. All disturbe he construction s e Ra ason) Season) site were plante with temporary s	ed areas were pecifications. te (Ibs./acre) 130 40 d throughout the seed, as defineco	e floodplain and riparian d in the construction	
dgn		Fraxinus pennsylvanica Quercus michauxii Vyssa biflora Liriodendron tulipifera Quercus lyrata Quercus nigra Understory H Clethra alnifolia Zyrilla racimiflora tea virginica Magnolia virginiana Lyonia lucida Parsea palustris Ripari Liriodendron tulipifera	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak Ieadwater Riparian Buffer Pla Ia' x 15' spacing - 161 stems Sweet Pepperbush Titi Sweetspire Sweet Bay Magnolia Fetterbush Red bay ian Wetland Buffer Plantings 9' x 12' spacing - 403 stems Tulip Poplar	IS - Overstory //Acre 10% 20% 25% 10% 15% 20% antings - Underste s/Acre 15% 20% 15% 15% 20% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15	200 400 500 200 300 400 ory 120 160 120 120 120 120 120 120	The following table lists tempora stabilized using mulch and temp Planting Dates September to March April to August Permanent herbaceous seed buffer areas. Permanent seed specifications.	ry seed mix for the project orary seed as defined in t Species Name Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project it mixtures were applied	t site. All disturbe he construction s e Ra ason) Season) site were planter with temporary s % Planted	ed areas were pecifications. te (Ibs./acre) 130 40 d throughout the seed, as defined Total Ibs	e floodplain and riparian d in the construction]
-1A.dgn		Fraxinus pennsylvanica Quercus michauxii Vyssa biflora Liriodendron tulipifera Quercus lyrata Quercus nigra Understory H Clethra alnifolia Zyrilla racimiflora tea virginica Magnolia virginiana Lyonia lucida Parsea palustris Ripari Liriodendron tulipifera Vyssa biflora Quercus michauxii	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak Ieadwater Riparian Buffer Pla Ia' x 15' spacing - 161 stems Sweet Pepperbush Titi Sweet Bay Magnolia Fetterbush Red bay ian Wetland Buffer Plantings 9' x 12' spacing - 403 stems Tulip Poplar Swamp Black Gum Swamp Chestnut Oak	IS - Overstory //Acre 10% 20% 15% 10% 15% 20% antings - Underste s/Acre 15% 15% 15% - Overstory //Acre 15% 15%	200 400 500 200 300 400 ory 120 160 120 120 160 120 480 480 480	The following table lists tempora stabilized using mulch and temp Planting Dates September to March April to August Permanent herbaceous seed buffer areas. Permanent seed specifications.	ry seed mix for the project orary seed as defined in t Species Name Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project at mixtures were applied Common Name Big blue stem	t site. All disturbe he construction s e Ra ason) Season) site were plantee with temporary s % Planted By Species 10%	ed areas were pecifications. te (Ibs./acre) 130 40 d throughout the seed, as defined Total Ibs per Acre 1,50	e floodplain and riparian d in the construction Wetland Tolerance FAC	
PSH_1A.dgn		Fraxinus pennsylvanica Quercus michauxii Vyssa biflora Liriodendron tulipifera Quercus lyrata Quercus nigra Understory H Clethra alnifolia Zyrilla racimiflora tea virginica Magnolia virginiana Lyonia lucida Parsea palustris Ripari Liriodendron tulipifera Vyssa biflora Quercus michauxii Quercus lyrata	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak Ieadwater Riparian Buffer Pla Ia' x 15' spacing - 161 stems Sweet Pepperbush Titi Sweet Bay Magnolia Fetterbush Red bay ian Wetland Buffer Plantings 9' x 12' spacing - 403 stems Tulip Poplar Swamp Black Gum Swamp Dhestnut Oak Overcup Oak	IS - Overstory //Acre 10% 20% 15% 20% antings - Underste s/Acre 15% 15% 15% 15% 15% 15% 15% 15%	200 400 500 200 300 400 ory 120 160 120 120 160 120 120 160 120 120 160 120 120 160 120 120 160 120 120 160 120 120 160 120 120 160 120 120 160 120 120 120 160 120 120 120 120 120 120 120 12	The following table lists tempora stabilized using mulch and temp Planting Dates September to March April to August Permanent herbaceous seed buffer areas. Permanent seed specifications. Scientific Name Andropogon gerardii Andropogon glomeratus	ry seed mix for the project orary seed as defined in t Species Name Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project d mixtures were applied Common Name Big blue stem Big blue stem	t site. All disturbe he construction s e Ra ason) Season) Site were planted with temporary s % Planted By Species 10%	ed areas were pecifications. te (Ibs./acre) 130 40 d throughout the seed, as defined Total Ibs per Acre 1.50 1.50	e floodplain and riparian d in the construction Wetland Tolerance FAC FACW+	
SB_PSH_1A.dgn		Fraxinus pennsylvanica Quercus michauxii Quscus michauxii Vyssa biflora Liriodendron tulipifera Quercus nigra Understory H Clethra alnifolia Cyrilla racimiflora tea virginica Magnolia virginiana Lyonia lucida Persea palustris Ripari Liriodendron tulipifera Vyssa biflora Quercus michauxii Quercus nigra Duerus nohelnes	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak Ieadwater Riparian Buffer Pla Ia' x 15' spacing - 161 stems Sweet Pepperbush Titi Sweet Bay Magnolia Fetterbush Red bay ian Wetland Buffer Plantings 9' x 12' spacing - 403 stems Tulip Poplar Swamp Black Gum Swamp Black Gum Swamp Destrut Oak Overcup Oak Water Oak	IS - Overstory //Acre 10% 20% 25% 10% 15% 20% antings - Underste s/Acre 15% 15% 15% 15% 15% 15% 15% 15%	200 400 500 200 300 400 ory 120 160 120 120 160 120 120 160 480 480 480 480 480 240	The following table lists tempora stabilized using mulch and temp Planting Dates September to March April to August Permanent herbaceous seed buffer areas. Permanent seed specifications. Scientific Name Andropogon gerardii Andropogon glomeratus Carex lupulina	ry seed mix for the project orary seed as defined in t Species Name Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project d mixtures were applied Common Name Big blue stem Bushy blue stem Hop sedge	t site. All disturbe he construction s e Ra ason) Season) Season) site were planted with temporary s % Planted By Species 10% 10%	ed areas were pecifications. te (Ibs./acre) 130 40 d throughout the seed, as defined Total Ibs per Acre 1.50 1.50 2.25	e floodplain and riparian d in the construction Wetland Tolerance FAC FACW+ OBL	
3_ASB_PSH_1A.dgn		Fraxinus pennsylvanica Quercus michauxii Quercus michauxii Liriodendron tulipifera Quercus nigra Understory H Clethra alnifolia Cyrilla racimiflora tea virginica Magnolia virginiana Lyonia lucida Persea palustris Ripari Liriodendron tulipifera Quercus nigra	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak Ieadwater Riparian Buffer Pla Ia' x 15' spacing - 161 stems Sweet Pepperbush Titi Sweet Bay Magnolia Fetterbush Red bay ian Wetland Buffer Plantings 9' x 12' spacing - 403 stems Tulip Poplar Swamp Black Gum Swamp Dhestnut Oak Overcup Oak Wallow Oak Cherrybark Oak	IS - Overstory //Acre 10% 20% 25% 10% 15% 20% antings - Underste s//Acre 15% 15% 20% 15% 20% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15	200 400 500 200 300 400 ory 120 160 120 120 160 120 120 160 120 120 160 240 480 480 480 480 240 320	The following table lists tempora stabilized using mulch and temp Planting Dates September to March April to August Permanent herbaceous seed buffer areas. Permanent seed specifications. Scientific Name Andropogon gerardii Andropogon genardii Andropogon glomeratus Carex lupulina Carex upunia	ry seed mix for the project orary seed as defined in t Species Namo Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project d mixtures were applied Common Name Big blue stem Bushy blue stem Hop sedge Fox sedge Fox sedge	t site. All disturbe he construction s e Ra ason) Season) Season) site were planted with temporary s % Planted By Species 10% 10% 10% 10%	ed areas were pecifications. te (Ibs./acre) 130 40 d throughout the seed, as defined Total Ibs per Acre 1.50 2.25 2.25 1.50	e floodplain and riparian d in the construction Wetland Tolerance FAC FACW+ OBL OBL OBL OBL CBL	
t578_ASB_PSH_1A.dgn		Fraxinus pennsylvanica Quercus michauxii Quscus michauxii Quscus lyrata Quercus nigra Understory H Clethra alnifolia Qyrilla racimiflora tea virginica Magnolia virginiana Lyonia lucida Persea palustris Ripari Liriodendron tulipifera Quercus michauxii Quercus nigra Que	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak Ieadwater Riparian Buffer Pla Ia' x 15' spacing - 161 stems Sweet Pepperbush Titi Sweetspire Sweet spire Sweet Bay Magnolia Fetterbush Red bay ian Wetland Buffer Plantings 9' x 12' spacing - 403 stems Tulip Poplar Swamp Black Gum Swamp Chestnut Oak Overcup Oak Water Oak Willow Oak Cherrybark Oak American Elm	IS - Overstory //Acre 10% 20% 25% 10% 15% 20% antings - Underste s//Acre 15% 15% 15% 20% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15	200 400 500 200 300 400 ory 120 160 120 120 160 120 120 160 120 120 140 240 480 480 480 480 480 240 320 480	The following table lists tempora stabilized using mulch and temp Planting Dates September to March April to August Permanent herbaceous seed buffer areas. Permanent seed specifications. Scientific Name Andropogon gerardii Andropogon generatus Carex lupulina Carex lupulina Carex lupulina Carex lupulina Carex lupulina Lymus virginicus Juncus effusus	ry seed mix for the project orary seed as defined in t Species Name Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project d mixtures were applied Common Name Big blue stem Bushy blue stem Hop sedge Fox sedge Virginia wild rye Soft rush	t site. All disturbe he construction s e Ra ason) Season) Site were planted with temporary s % Planted By Species 10% 10% 10% 10% 10%	ed areas were pecifications. te (Ibs./acre) 130 40 d throughout the seed, as defined Total Ibs per Acre 1.50 2.25 2.25 1.50 2.25	e floodplain and riparian d in the construction Wetland Tolerance FAC FACW+ OBL OBL FAC FAC FACW+	
.124578_ASB_PSH_1A.dgn		Fraxinus pennsylvanica Quercus michauxii Quercus michauxii Liriodendron tulipifera Quercus nigra Understory H Clethra alnifolia Cyrilla racimiflora tea virginica Magnolia virginiana Lyonia lucida Persea palustris Ripari Liriodendron tulipifera Quercus nigra Ripari	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak Ieadwater Riparian Buffer Pla Ia' x 15' spacing - 161 stems Sweet Paperbush Titi Sweet Bay Magnolia Fetterbush Red bay ian Wetland Buffer Plantings 9' x 12' spacing - 403 stems Tulip Poplar Swamp Black Gum Swamp Black Gum Swamp Destnut Oak Overcup Oak Water Oak Willow Oak Cherrybark Oak American Elm an Wetland Buffer Plantings	IS - Overstory //Acre 10% 20% 25% 10% 15% 20% antings - Underste s//Acre 15% 15% 15% 15% 15% 15% 15% 15% 15% 15%	200 400 500 200 300 400 ory 120 160 120 160 120 160 120 480 480 480 480 480 480 480 48	The following table lists tempora stabilized using mulch and temp Planting Dates September to March April to August Permanent herbaceous seed buffer areas. Permanent seec specifications. Scientific Name Andropogon gerardii Andropogon gerardii Andropogon glomeratus Carex lupulina Carex vulpinoidea Elymus virginicus Juncus effusus	ry seed mix for the project orary seed as defined in t Species Name Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project t d mixtures were applied Common Name Big blue stem Bushy blue stem Hop sedge Fox sedge Virginia wild rye Soft rush Switchgrass	t site. All disturb he construction s e Ra ason) Season) site were planter with temporary s % Planted By Species 10% 10% 10% 10% 10% 10%	ed areas were pecifications. te (Ibs./acre) 130 40 d throughout the seed, as defined Total Ibs per Acre 1.50 2.25 2.25 1.50 2.25 1.50	e floodplain and riparian d in the construction FAC FACW+ OBL OBL FAC FACW+ FAC FACW+	
NSV124578_ASB_PSH_1A.dgn		Fraxinus pennsylvanica Quercus michauxii Quercus michauxii Vyssa biflora Liriodendron tulipifera Quercus nigra Understory H Clethra alnifolia Cyrilla racimiflora tea virginica Magnolia virginiana Lyonia lucida Persea palustris Ripari Liriodendron tulipifera Quercus nigra Quercus ni	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak Ieadwater Riparian Buffer Pla Ia' x 15' spacing - 161 stems Sweet Pepperbush Titi Sweet Bay Magnolia Fetterbush Red bay ian Wetland Buffer Plantings 9' x 12' spacing - 403 stems Tulip Poplar Swamp Black Gum Swamp Destnut Oak Overcup Oak Water Oak Willow Oak Cherrybark Oak American Elm an Wetland Buffer Plantings 18' x 15' spacing - 161 stems	IS - Overstory //Acre 10% 20% 25% 10% 15% 20% antings - Underste s/Acre 15% 15% 15% 15% 15% 15% 15% 15% 15% 15%	200 400 500 200 300 400 ory 120 160 120 160 120 160 120 160 120 140 240 240 240 320 480 480 480 480 480 480 240 240 240 240 240 240 240 24	The following table lists tempora stabilized using mulch and temp Planting Dates September to March April to August Permanent herbaceous seed buffer areas. Permanent seed specifications. Scientific Name Andropogon gerardii Andropogon gerardii Andropogon gerardii Carex Jupinoidea Elymus virginicus Juncus effusus Panicum virgatum Polygonum pensylvanicum	ry seed mix for the project orary seed as defined in t Species Namo Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project d mixtures were applied Common Name Big blue stem Hop sedge Fox sedge Virginia wild rye Soft rush Switchgrass Smartweed	t site. All disturb he construction s e Ra ason) Season) Site were planted with temporary s % Planted By Species 10% 10% 10% 10% 10% 10% 10%	ed areas were pecifications. te (Ibs./acre) 130 40 d throughout the seed, as defined Total Ibs per Acre 1.50 2.25 2.25 1.50 2.25 1.50 2.25 1.50 0.75 0.75	e floodplain and riparian d in the construction FAC FACW+ OBL OBL FAC FACW+ FAC+ FAC+ FACW FAC+ FACW	
rLaNSV124578_ASB_PSH_IA.dgn		Fraxinus pennsylvanica Quercus michauxii Quercus michauxii Vyssa biflora Liriodendron tulipifera Quercus nigra Understory H Clethra alnifolia Cyrilla racimiliora tea virginica Magnolia virginiana Lyonia lucida Persea palustris Ripari Liriodendron tulipifera Quercus nigra Quercus nigra Quercus nigra Quercus nigra Quercus ngra Cyrata Cyra	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak leadwater Riparian Buffer Pla 18' x 15' spacing - 161 stems Sweet Papperbush Titi Sweetspire Sweet Bay Magnolia Fetterbush Red bay ian Wetland Buffer Plantings 9' x 12' spacing - 403 stems Tulip Poplar Swamp Black Gum Swamp Black Gum Swamp Black Gum Swamp Black Gum Swamp Black Gum Swamp Chestnut Oak Overcup Oak Water Oak Willow Oak Cherrybark Oak American Elm an Wetland Buffer Plantings - 18' x 15' spacing - 161 stems Titil Sweetspire	IS - Overstory //Acre 10% 20% 25% 10% 15% 20% antings - Underste s/Acre 15% 15% 20% 15% 20% 15% 15% 20% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15	200 400 500 200 300 400 ory 120 160 120 160 120 160 120 480 480 480 480 480 480 480 48	The following table lists tempora stabilized using mutch and temp Planting Dates September to March April to August Permanent herbaceous seed buffer areas. Permanent seed specifications. Scientific Name Andropogon gerardii Andropogon gerardii Andropogon glomeratus Carex lupulina Carex vulpinoidea Elymus virginicus Juncus effusus Panicum virgatum Polygonum pensylvanicum Schizachyrium scoparium	ry seed mix for the project orary seed as defined in t Species Namo Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project d mixtures were applied Common Name Big blue stem Bushy blue stem Hop sedge Fox sedge Virginia wild rye Soft rush Soft rush Smartweed Little blue stem Indiannzes	t site. All disturb he construction s e Ra ason) Season) Site were planted with temporary s % Planted By Species 10% 10% 10% 10% 10% 5% 10%	ed areas were pecifications. te (Ibs./acre) 130 40 d throughout the seed, as defined Total Ibs per Acre 1.50 2.25 2.25 1.50 2.25 1.50 0.75 0.75	e floodplain and riparian d in the construction FAC FACW+ OBL OBL FAC FACW+ FAC+ FACW FACW FACU FACU	
ttPLANS\124578_ASB_PSH_1A.dgn		Fraxinus pennsylvanica Quercus michauxii Quercus michauxii Vyssa biflora Liriodendron tulipifera Quercus nigra Understory H Clethra alnifolia Cyrilla racimilora Lea virginica Vyssa biflora Liriodendron tulipifera Quercus phellos Quercus pagoda Jimus americana Ripari Exyrilla racimiflora Lea virginica Lea virg	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak leadwater Riparian Buffer Pla 18' x 15' spacing - 161 stems Sweet Papperbush Titi Sweetspire Sweet Bay Magnolia Fetterbush Red bay Ian Wetland Buffer Plantings 9' x 12' spacing - 403 stems Tulip Poplar Swamp Black Gum Swamp Black Gum Swamp Delar Swamp Black Gum Swamp Chestnut Oak Overcup Oak Water Oak Willow Oak Cherrybark Oak American Elm an Wetland Buffer Plantings 18' x 15' spacing - 161 stems Titi Sweetspire Swamp Doghobble	IS - Overstory //Acre 10% 20% 25% 10% 15% 20% antings - Underste s/Acre 15% 20% 15% 20% 15% 20% 15% 20% 15% 20% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15	200 400 500 200 300 400 ory 120 160 120 120 160 120 120 160 120 120 480 480 480 480 480 480 480 48	The following table lists tempora stabilized using mutch and temp Planting Dates September to March April to August Permanent herbaceous seed buffer areas. Permanent seed specifications. Scientific Name Andropogon glomeratus Carex lupilina Carex vulpinoidea Elymus virginicus Juncus effusus Panicum virgatum Polygonum pensylvanicum Schizachyrium scoparium Sorghastrum nutans	ry seed mix for the project orary seed as defined in t Species Name Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project i mixtures were applied Common Name Big blue stem Bushy blue stem Hop sedge Fox sedge Virginia wild rye Soft rush Switchgrass Smartweed Little blue stem Indiangrass Total	t site. All disturb he construction s e Ra ason) Season) Season) site were planted with temporary s % Planted By Species 10% 10% 10% 10% 10% 5% 10% 10% 10% 10%	ed areas were pecifications. 130 40 d throughout the seed, as defined Total Ibs per Acre 1.50 2.25 1.50 2.25 1.50 0.75 0.75 0.75 15.0	e floodplain and riparian d in the construction FAC FACW+ OBL OBL FAC FACW+ FAC+ FACW FACU FACU FACU	
ou1t\PLANS\124578_ASB_PSH_1A.dgn		Fraxinus pennsylvanica Quercus michauxii Vyssa biflora Liriodendron tulipifera Quercus nigra Understory H Clethra alnifolia Cyrilla racimiflora tea virginica Aggnolia virginiana Quercus palustris Ripari Liriodendron tulipifera Quercus pellos Quercus pagoda Jlmus americana Cyrilla racimiflora tea virginica Leuciflora Cyrilla racimiflora Cyrilla racimiflora Cuercus pellos Quercus pagoda Jlmus americana Cyrilla racimiflora Carpinus caroliniana Aggnolia virginiana	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak Ieadwater Riparian Buffer Pla 18' x 15' spacing - 161 stems Sweet Papperbush Titi Sweetspire Sweet Bay Magnolia Fetterbush Red bay Ian Wetland Buffer Plantings 9' x 12' spacing - 403 stems Tulip Poplar Swamp Black Gum Swamp Black Gum Swamp Black Gum Swamp Destnut Oak Overcup Oak Water Oak Wiltow Oak Cherrybark Oak American Elm an Wetland Buffer Plantings - 18' x 15' spacing - 161 stems Titil Sweetspire Swamp Doghobble Ironwood Sweet Bay Magnolia	IS - Overstory //Acre 10% 20% 25% 10% 15% 20% antings - Underste s/Acre 15% 20% 15% 20% 15% 20% 15% 20% 15% 15% 15% 15% 15% 15% 15% 15% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5	200 400 500 200 300 400 ory 120 160 120 160 120 160 120 160 120 480 480 480 480 480 480 480 240 240 240 240 320 480 130 190 258	The following table lists tempora stabilized using mutch and temp Planting Dates September to March April to August Permanent herbaceous seed to buffer areas. Permanent seed specifications. Scientific Name Andropogon gerardii Andropogon gerardii Andropogon gerardii Carex lupilnoidea Elymus virginicus Juncus effusus Panicum virgatum Polygonum pensylvanicum Schizachyrium scoparium Sorghastrum nutans	ry seed mix for the project orary seed as defined in t Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project of mixtures were applied Common Name Big blue stem Bushy blue stem Hop sedge Fox sedge Virginia wild rye Soft rush Switchgrass Smartweed Little blue stem Indiangrass Total	t site. All disturb he construction s e Ra ason) Season) Season) Site were planted with temporary s % Planted By Species 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	ed areas were pecifications. 130 40 d throughout the seed, as defined Total Ibs per Acre 1.50 2.25 2.25 1.50 2.25 1.50 0.75 0.75 0.75 1.50	e floodplain and riparian d in the construction FAC FACW+ OBL OBL FAC FACW+ FAC+ FAC+ FACW FACU FACU FACU	
4-built\PLANS\124578_ASB_PSH_1A.dgn		Fraxinus pennsylvanica Quercus michauxii Quercus michauxii Quercus lyrata Quercus lyrata Quercus nigra Understory H Clethra alnifolia Cyrilla racimiflora tea virginica Alagnolia virginiana Quercus grata Quercus lyrata Quercus lyrata Quercus lyrata Quercus pellos Quercus pellos Quercus pagoda Jlimus americana Ripari Cyrilla racimiflora tea virginica eucothoe racemosa Carpinus caroliniana Persea palustris	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak leadwater Riparian Buffer Pla 18' x 15' spacing - 161 stems Sweet Pepperbush Titi Sweet Bay Magnolia Fetterbush Red bay ian Wetland Buffer Plantings 9' x 12' spacing - 403 stems Tulip Poplar Swamp Black Gum Swamp Delar Gak Willow Oak Overcup Oak Willow Oak Cherrybark Oak American Elm an Wetland Buffer Plantings 18' x 15' spacing - 161 stems Titi Sweet Bay Magnolia Red Bay	IS - Overstory //Acre 10% 20% 25% 10% 15% 20% antings - Underste s/Acre 15% 20% 15% 20% 15% 20% 15% 20% 15% 15% 5% 15% 15% 15% 15% 15% 15% 15%	200 400 500 200 300 400 ory 120 160 120 120 160 120 120 160 120 120 1480 480 480 480 480 480 480 480	The following table lists tempora stabilized using mulch and temp Planting Dates September to March April to August Permanent herbaceous seed buffer areas. Permanent seed specifications. Scientific Name Andropogon gerardii Andropogon gerardii Andropogon gerardii Andropogon gerardii Carex vulpinoidea Elymus virginicus Juncus effusus Panicum virgatum Polygonum pensylvanicum Schizachyrium scoparium Sorghastrum nutans	ry seed mix for the project orary seed as defined in t Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project d mixtures were applied Common Name Big blue stem Hop sedge Fox sedge Virginia wild rye Soft rush Switchgrass Smartweed Little blue stem Indiangrass Total	t site. All disturbs he construction s e Ra ason) Season) Site were planted with temporary s % Planted By Species 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	ed areas were pecifications. te (Ibs./acre) 130 40 d throughout the seed, as defined Total Ibs per Acre 1.50 1.50 2.25 2.25 1.50 0.75 0.75 0.75 15.0	e floodplain and riparian d in the construction FAC FACW+ OBL OBL FACW+ FACW+ FACW+ FACW FACW FACU FACU	
m\As-built\PLaNS\124578_ASB_PSH_1A.dgn		Fraxinus pennsylvanica Quercus michauxii Quercus michauxii Quercus lyrata Quercus lyrata Quercus nigra Understory H Clethra alnifolia Cyrilia racimiflora tea virginica Magnolia virginiana yonia lucida Persea palustris Ripari Liriodendron tulipifera Quercus gradoda Jlimus americana Ripari Cyrilla racimiflora tea virginiana Quercus pagoda Jlimus americana Ripari Cyrilla racimiflora tea virginiana Persea palustris Pisea Palustris Pisea Palustris Pisea Palustris Pisea Pisea Palustris Pisea Pisea Pisea Pisea Palustris Pisea Pis	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak leadwater Riparian Buffer Pla 18' x 15' spacing - 161 stems Sweet Pepperbush Titi Sweetspire Sweet Bay Magnolia Fetterbush Red bay tan Wetland Buffer Plantings 9' x 12' spacing - 403 stems Tulip Poplar Swamp Black Gum Swamp Black Gum Swamp Denstnut Oak Overcup Oak Water Oak Willow Oak Cherrybark Oak American Elm an Wetland Buffer Plantings - 18' x 15' spacing - 161 stems Titi Sweetspire Sweet Bay Magnolia Red bay Highbush Blueberry Tian Ling Stake Deatings (20)	IS - Overstory //Acre 10% 20% 25% 10% 15% 20% 15% 20% 15% 20% 15% 20% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15	200 400 500 200 300 400 ory 120 160 120 120 160 120 120 160 120 120 160 120 120 160 120 120 160 120 120 160 120 120 160 120 120 160 120 120 160 120 120 120 160 120 120 160 120 120 120 160 120 120 160 120 120 120 160 120 120 120 160 120 120 120 160 120 120 160 120 120 120 120 120 120 120 12	The following table lists tempora stabilized using mulch and temp Planting Dates September to March April to August Permanent herbaceous seed buffer areas. Permanent seed specifications. Scientific Name Andropogon gerardii Andropogon gerardii Andropogon glomeratus Carex lupulina Carex vulpinoidea Elymus virginicus Juncus effusus Panicum virgatum Polygonum pensylvanicum Schizachyrium scoparium	ry seed mix for the project orary seed as defined in t Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project d mixtures were applied Common Name Big blue stem Bushy blue stem Hop sedge Fox sedge Virginia wild rye Soft rush Switchgrass Smartweed Little blue stem Indiangrass Total	t site. All disturbe he construction s e Ra ason) Season) Site were planted my Species 10% 10% 10% 10% 10% 10% 10% 10%	ed areas were pecifications. te (Ibs./acre) 130 40 d throughout the seed, as defined Total Ibs per Acre 1.50 1.50 2.25 2.25 1.50 0.75 0.75 0.75 1.50	e floodplain and riparian d in the construction FAC FACW+ OBL OBL FAC FACW+ FAC+ FAC+ FACW FACU FACU	
ssgn\As-built\PLANS\124578_ASB_PSH_1A.dgn		Fraxinus pennsylvanica Quercus michauxii Quercus michauxii Quercus lyrata Quercus lyrata Quercus nigra Understory H Clethra alnifolia Cyrilla racimiflora tea virginica Magnolia virginiana Quercus palustris Ripari Liriodendron tulipifera Quercus nigra Quercus nigra Quercus pellos Quercus pel	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak leadwater Riparian Buffer Pla 18' x 15' spacing - 161 stems Sweet Pepperbush Titi Sweet Bay Magnolia Felterbush Red bay ian Wetland Buffer Plantings 9' x 12' spacing - 403 stems Tulip Poplar Swamp Black Gum Swamp Black Gum Swamp Denstnut Oak Overcup Oak Water Oak Willow Oak Cherrybark Oak American Elm an Wetland Buffer Plantings - 18' x 15' spacing - 161 stems Titi Sweet Bay Magnolia Red bay Highbush Blueberry rian Live Stake Plantings (Ref	IS - Overstory (/Acre 10% 20% 25% 10% 15% 20% 15% 20% 15% 20% 15% 20% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15	200 400 500 200 300 400 ory 120 160 120 120 160 120 120 160 120 120 1480 480 480 480 480 480 480 480	The following table lists tempora stabilized using mulch and temp Planting Dates September to March April to August Permanent herbaceous seed to buffer areas. Permanent seed specifications. Scientific Name Andropogon gerardii Andropogon gerardii Andropogon glomeratus Carex lupulina Carex vulpinoidea Elymus virginicus Juncus effusus Panicum virgatum Polygonum pensylvanicum Schizachyrium scoparium Sorghastrum nutans	ry seed mix for the project orary seed as defined in t Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project of mixtures were applied Common Name Big blue stem Bushy blue stem Hop sedge Fox sedge Virginia wild rye Soft rush Switchgrass Smartweed Little blue stem Indiangrass Total	t site. All disturbe he construction s e Ra ason) Season) Season) Site were planted my Species 10% 10% 10% 10% 10% 10% 10% 10%	ed areas were pecifications. te (Ibs./acre) 130 40 d throughout the seed, as defined Total Ibs per Acre 1.50 1.50 2.25 2.25 1.50 2.25 1.50 0.75 0.75 1.50	e floodplain and riparian d in the construction FAC FACW+ OBL OBL OBL FAC FACW+ FAC+ FAC+ FAC+ FACU FACU	
VDesign\As-built\PLANS\124578_ASB_PSH_1A.dgn		Fraxinus pennsylvanica Quercus michauxii Quercus michauxii Quercus lifora Quercus nigra Quercus nigra Understory H Understory H Understory H Clethra alnifolia Quricus nigra Magnolia virginiana Quercus nigra Quercus lyrata Quercus nigra Quercus nigra Quercus nigra Quercus nigra Quercus pagoda Jimus americana Ripari Cyrilla racimiflora Lea virginica Quercus phellos Quercus phellos Quercus phellos Quercus phellos Quercus phellos Quercus pendoda Jimus americana Ripari Cyrilla racimiflora Lea virginiana Persea palustris Varse anglustris Varse anglustris Varse anglustris Varse anglustris Cacineum corymbosum Ripa Cephalanthus occidentalis Salix nigra	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak leadwater Riparian Buffer Pla 18' x 15' spacing - 161 stems Sweet Pepperbush Titi Sweet Bay Magnolia Fetterbush Red bay ian Wetland Buffer Plantings 9' x 12' spacing - 403 stems Tulip Poplar Swamp Black Gum Swamp Black Gum Swamp Destnut Oak Overcup Oak Water Oak Willow Oak Cherrybark Oak American Elm an Wetland Buffer Plantings - 18' x 15' spacing - 161 stems Titi Sweet Bay Magnolia Red bay Highbush Blueberry rian Live Stake Plantings (Re Buttonbush Black Willow	IS - Overstory (/Acre 10% 20% 25% 10% 15% 20% antings - Underste s/Acre 15% 15% 15% 20% 15% 15% 15% 15% 15% 15% 15% 15	200 400 500 200 300 400 ory 120 160 120 160 120 160 120 160 120 200 120 160 120 120 120 160 120 120 120 120 120 120 120 12	The following table lists tempora stabilized using mulch and temp Planting Dates September to March April to August Permanent herbaceous seed to buffer areas. Permanent seed specifications. Scientific Name Andropogon gerardii Andropogon gerardii Andropogon gerardii Andropogon gerardii Carex lupulina Carex vulpinoidea Elymus virginicus Juncus effusus Panicum virgatum Polygonum pensylvanicum Schizachyrium scoparium Sorghastrum nutans	ry seed mix for the project orary seed as defined in t Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project at mixtures were applied Common Name Big blue stem Bushy blue stem Hop sedge Fox sedge Virginia wild rye Soft rush Switchgrass Smartweed Little blue stem Indiangrass Total	t site. All disturbe he construction s e Ra ason) Season) Season) Site were planted with temporary s % Planted By Species 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	ed areas were pecifications. te (lbs./acre) 130 40 40 throughout the seed, as defined Total Ibs per Acre 1.50 1.50 2.25 1.50 2.25 1.50 0.75 0.75 0.75 15.0	e floodplain and riparian d in the construction FAC FACW+ OBL OBL CBL FACW+ FAC FACW+ FACU FACU FACU FACU	
13 378.Design\As-built\PLANS\124578_ASB_PSH_1A.dgn		Fraxinus pennsylvanica Quercus michauxii Quercus michauxii Quercus michauxii Quercus lyrata Quercus nigra Understory H Clethra alnifolia Qyrilla racimillora tea virginica Magnolia virginiana Quercus lyrata Quercus lyrata Quercus lyrata Quercus lyrata Quercus lyrata Quercus phellos Quercus pagoda Ilmus americana Riparia Cyrilla racimillora tea virginiana Parsea palustris Varse palustris Caccineum corymbosum Ripa Salix ngra Salix sericea	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak leadwater Riparian Buffer Plat 18' x 15' spacing - 161 stems Sweet Pepperbush Titi Sweet Bay Magnolia Fetterbush Red bay ian Wetland Buffer Plantings 9' x 12' spacing - 403 stems Tulip Poplar Swamp Black Gum Swamp Dack Gum Swamp Dack Gum Swamp Dack Gum Swamp Chestnut Oak Overcup Oak Willow Oak Cherrybark Oak American Elm an Wetland Buffer Plantings - 18' x 15' spacing - 161 stems Titi Sweetspire Swamp Doghobble Ironwood Sweet Bay Magnolia Red bay Highbush Blueberry Highbush Blueberry Frian Live Stake Plantings (Ref Buttonbush Black Willow	IS - Overstory (/Acre 10% 20% 25% 10% 15% 20% antings - Underste S/Acre 15% 20% 15% 20% 15% 15% 15% 15% 15% 15% 15% 15	200 400 500 200 300 400 ory 120 160 120 160 120 160 120 160 120 200 120 120 160 120 120 120 120 120 120 120 12	The following table lists tempora stabilized using mulch and temp Planting Dates September to March April to August Permanent herbaceous seed of buffer areas. Permanent seed specifications. Scientific Name Andropogon gerardii Andropogon gerardii Andropogon gerardii Carex lupulina Carex vulpinoidea Elymus virginicus Juncus effusus Panicum virgatum Polygonum pensylvanicum Schizachyrium scoparium Sorghastrum nutans	ry seed mix for the project orary seed as defined in t Species Name Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project a mixtures were applied Common Name Big blue stem Bushy blue stem Hop sedge Fox sedge Virginia wild rye Soft rush Switchgrass Smartweed Little blue stem Indiangrass Total	t site. All disturbe he construction s e Ra ason) Season) Season) Site were planter with temporary s % Planted By Species 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	ed areas were pecifications. te (lbs./acre) 130 40 40 throughout the seed, as defined Total Ibs per Acre 1.50 1.50 2.25 1.50 2.25 1.50 0.75 0.75 1.50	e floodplain and riparian d in the construction FAC FACW+ OBL OBL OBL FAC FACW+ FAC+ FAC+ FACU FACU FACU	
24013 24578s/Design\As-built\PLANS\124578_ASB_PSH_1A.dgn		Fraxinus pennsylvanica Quercus michauxii Quercus michauxii Quercus michauxii Quercus nigra Quercus nigra Understory H Clethra alnifolia Qyrilla racimiflora tea virginica de gnolia virginiana Quercus lyrata Quercus lyrata Quercus lyrata Quercus nigra Quercus phellos Quer	9' x 12' spacing - 403 stems Green Ash Swamp Chestnut Oak Swamp Black Gum Tulip Poplar Overcup Oak Water Oak leadwater Riparian Buffer Pla 18' x 15' spacing - 161 stems Sweet Pepperbush Titi Sweetspire Sweet Bay Magnolia Fetterbush Red bay ian Wetland Buffer Plantings 9' x 12' spacing - 403 stems Tulip Poplar Swamp Black Gum Swamp Dack Gum Swamp Dack Gum Swamp Dack Gum Swamp Dack Gum Swamp Chestnut Oak Overcup Oak Willow Oak Cherrybark Oak American Elm an Wetland Buffer Plantings - 18' x 15' spacing - 161 stems Titi Sweetspire Swamp Doghobble Ironwood Sweet Bay Magnolia Red bay Highbush Blueberry Highbush Blueberry Highbush Blueberry Black Willow Silky Willow	IS - Overstory (/Acre 10% 20% 25% 10% 15% 20% antings - Understa //Acre 15% 20% 15% 20% 15% 15% 15% 15% 15% 15% 15% 15	200 400 500 200 300 400 ory 120 160 120 120 160 120 120 160 120 120 120 160 120 120 120 120 120 120 120 12	The following table lists tempora stabilized using mulch and temp Planting Dates September to March April to August Permanent herbaceous seed of buffer areas. Permanent seed specifications. Scientific Name Andropogon gerardii Andropogon gerardii Andropogon gerardii Carex tuplinoidea Elymus virginicus Juncus effusus Panicum virgatum Polygonum pensylvanicum Schizachyrium scoparium Sorghastrum nutans	ry seed mix for the project orary seed as defined in t Species Name Rye Grain (Cool Se Browntop Millet (Warm mixtures for the project of mixtures were applied Common Name Big blue stem Bushy blue stem Hop sedge Fox sedge Virginia wild rye Soft rush Switchgrass Smartweed Little blue stem Indiangrass Total	t site. All disturbe he construction s e Ra ason) Season) Season) Site were planted with temporary s % Planted By Species 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	ed areas were pecifications. te (Ibs./acre) 130 40 40 Total Ibs per Acre 1.50 1.50 2.25 2.25 1.50 0.75 0.75 0.75 1.50	e floodplain and riparian d in the construction FAC FACW+ OBL OBL OBL FAC+ FAC+ FACW+ FAC+ FACU FACU FACU	

CIFICATIONS

ROLINA PLANNING AND DESIGN MANUAL 2009 _____

RAVEL CONSTRUCTION ENTRANCE

EDIMENT TRAP

LT FENCE

OCK DAM

REAM CROSSING

*S.U.E = SUBSURFACE UTILITY ENGINEER

STATE OF NORTH CAROLINA DIVISION OF HIGHWAYS CONVENTIONAL SYMBOLS

BOUNDARIES AND PROPERTY:

State Line	anan a a a a manananan a a a a mar
County Line	
Township Line	
City Line	
Reservation Line	
Property Line	
Existing Iron Pin	
Property Corner	***
Property Monument	ĒCM
Parcel/Sequence Number	2
Existing Fence Line	-xxx
Proposed Woven Wire Fence	
Proposed Chain Link Fence	
Proposed Barbed Wire Fence	
Existing Wetland Boundary	
Proposed Wetland Boundary	======================================
Existing Endangered Animal Boundary	EAB
Existing Endangered Plant Boundary	EPB
BUILDINGS AND OTHER CULTUR	RE:
Gas Pump Vent or U/G Tank Cap	0
Sign	O s
Well	Q
Small Mine	*
Foundation	
Area Outline	
Cemetery	
Building	
School	Ē.
Church	ക്
Dam — — — — — — — — — — — — — — — — — — —	n do udela esta faco de lancat los galaciens

HYDROLOGY:

Stream or Body of Water	
Hydro, Pool or Reservoir —————	
Jurisdictional Stream	JS
Buffer Zone 1	BZ 1
Buffer Zone 2	BZ 2
Flow Arrow	-
Disappearing Stream	·
Spring	0
Wetland	· *
Proposed Lateral, Tail, Head Ditch ————	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
False Sump	$\langle \phi \rangle$

RAILROADS:

Standard Gauge	
RR Signal Milepost	O
Switch	
RR Abandoned	
RR Dismantled	
RIGHT OF WAY:	
Baseline Control Point	
Existing Right of Way Marker	- 🛆
Existing Right of Way Line	
Proposed Right of Way Line	
Proposed Right of Way Line with Iron Pin and Cap Marker	
Proposed Right of Way Line with Concrete or Granite Marker	-0-0
Existing Control of Access	- —(<u>ē</u>)—
Proposed Control of Access	
Existing Easement Line	- —— Е —— —
Proposed Temporary Construction Easement -	E
Proposed Temporary Drainage Easement —	TDE
Proposed Permanent Drainage Easement —	PDE
Proposed Permanent Utility Easement ———	PUE
Proposed Temporary Utility Easement	TUE
Proposed Permanent Easement with Iron Pin and Cap Marker	• 🚸
ROADS AND RELATED FEATUR	RES:
Existing Edge of Pavement	
Existing Curb	Environt portions provided particular
Proposed Slope Stakes Cut	¢
Proposed Slope Stakes Fill	<u>F</u>
Proposed Wheel Chair Ramp	WCR
Existing Metal Guardrail —————	<u> </u>
Proposed Guardrail	<u> </u>
Existing Cable Guiderail	<u> </u>
Proposed Cable Guiderail	<u> </u>
Equality Symbol	•
Pavement Removal	\boxtimes
VEGETATION:	
Single Tree	- &
Single Shrub	- 0
Hedge	
Woods Line	
Orchard	- & & & & &
Vineyard	- Vineyard

EXISTING STRUCTURES:

MAJOR:	
Bridge, Tunnel or Box Culvert	CONC
Bridge Wing Wall, Head Wall and End Wall-) CONC WW (
MINOR:	
Head and End Wall	CONC HW
Pipe Culvert	
Footbridge	and and the second second second second second second
Drainage Box: Catch Basin, DI or JB	СВ
Paved Ditch Gutter	
Storm Sewer Manhole	S
Storm Sewer	s

UTILITIES:

POWER:	
Existing Power Pole	6
Proposed Power Pole	6
Existing Joint Use Pole	
Proposed Joint Use Pole	- b -
Power Manhole	®
Power Line Tower	\boxtimes
Power Transformer	\mathbb{M}
U/G Power Cable Hand Hole	НН
H-Frame Pole	••
Recorded U/G Power Line	p
Designated U/G Power Line (S.U.E.*)	P
ELEPHONE:	
Existing Telephone Pole	

-xising relephone role	•
Proposed Telephone Pole	-0-
Felephone Manhole	T
Felephone Booth	3
Felephone Pedestal	Ξ
elephone Cell Tower	"
J/G Telephone Cable Hand Hole	HH
Recorded U/G Telephone Cable	T
Designated U/G Telephone Cable (S.U.E.*)— –––	-1
Recorded U/G Telephone Conduit	
Designated U/G Telephone Conduit (S.U.E.*) –––	
Recorded U/G Fiber Optics Cable	T FO
Designated U/G Fiber Optics Cable (S.U.E.*)	-T F0-

PROJECT REFERENCE	E NO. SHEET NO
ANN'S RTH CAROLINE	1
ST Range OFESSION 30 F	
	ZID
SEAL 22967	225 Valo 425
WATER: 09.09.003	986
Water Manhola	Ŵ
Water Mater	
	0
	~
Water Hyarant	
Recorded U/G Water Line	
Designated U/G Water Line (S.U.E.*)	
Above Ground Water Line	A/G Water
774	
	N
IV Satellite Dish	<i>D</i>
IV Pedestal	
IV lower	Ø
U/G TV Cable Hand Hole	Нн
Recorded U/G TV Cable	Tv
Designated U/G TV Cable (S.U.E.*)	Tv
Recorded U/G Fiber Optic Cable	TV F0
Designated U/G Fiber Optic Cable (S.U.E.*)—	TV F0
GAS:	
Gas Valve	\$
Gas Meter	Ø
Recorded U/G Gas Line	
Designated U/G Gas Line (S.U.E.*)	G
Above Ground Gas Line	A/G Gos
SANIIARY SEWER:	-
Sanifary Sewer Manhole	•
Sanitary Sewer Cleanout	Ð
U/G Sanitary Sewer Line	
Above Ground Sanitary Sewer	A/G Sanitary Sewer
Recorded SS Forced Main Line	F\$\$
Designated SS Forced Main Line (S.U.E.*) —	— — — — FSS— — — -
MISCELLANIEOLIS	
MIJUELLAINEUUJ:	
Litility Pole with Pres	•
Utility Logardad Chiest	
	©
	5
Utility Unknown U/G Line	
U/G Tank; Water, Gas, Oil	
U/G Tank; Water, Gas, Oil A/G Tank; Water, Gas, Oil	
U/G Tank; Water, Gas, Oil A/G Tank; Water, Gas, Oil U/G Test Hole (S.U.E.*)	
U/G Tank; Water, Gas, Oil A/G Tank; Water, Gas, Oil U/G Test Hole (S.U.E.*) Abandoned According to Utility Records	© AATUR

//2013 1245 /8/Design \As-built \PLANS \124578_ASB_PSH_05.dor

FINCY

APPENDIX E

Photo-ID Log

Photo Point 1, UT1c - Station 52+37 (August 13, 2013)

Photo Point 2, UT1c - Station 51+60 (August 13, 2013)

Photo Point 3, UT1c - Station 51+40 (August 13, 2013)

Photo Point 4, UT1c - Station 50+90 (August 13, 2013)

Photo Point 5, UT1c - Station 49+90 (August 13, 2013)

Photo Point 6, UT1c - Station 44+25 (August 13, 2013)

Photo Point 7, UT1c - Station 44+00 (August 13, 2013)

Photo Point 8 (Upstream), UT1b – Station 37+00 (August 13, 2013)

Photo Point 9 (Upstream), UT1b – Station 34+25 (August 13, 2013)

Photo Point 9 (East), UT1b – Station 34+25 (August 13, 2013)

Photo Point 10 (Upstream), UT1b – Station 22+15 (August 13, 2013)

Photo Point 10 (North), UT1b – Station 22+15 (August 13, 2013)

Photo Point 11, UT3 - Station 19+40 (August 13, 2013)

Photo Point 12, UT3 – Station 19+25 (August 13, 2013)

Photo Point 13, UT3 - Station 19+10 (August 13, 2013)

Photo Point 14 (Northeast), UT1b – Station 21+20 (August 13, 2013)

Photo Point 14 (Upstream), UT1b – Station 21+20 (August 13, 2013)

Photo Point 15 (Upstream), UT1b – Station 18+75 (August 13, 2013)

Photo Point 15 (east), UT1b – Station 18+75 (August 13, 2013)

Photo Point 17, UT1a - Station 12+75 (August 13, 2013)

Photo Point 16, UT1a - Station 14+60 (August 13, 2013)

Photo Point 18, UT1a - Station 10+60 (August 13, 2013)

Photo Point 8, UT1b (June 12, 2013)

Photo Point 8, UT1b (August 13, 2013)

Photo Point 10 area, UT1b (June 12, 2013)

Photo Point 10, UT1b (August 13, 2013)

Photo Point 15 area, UT1b (June 12, 2013)

Photo Point 15, UT1b (August 13, 2013)

Photo Point 17 area, UT1a (June 12, 2013)

Photo Point 17, UT1a (August 13, 2013)